Skip to main content
Log in

Efficient Photodegradation of Endocrine-Disrupting Chemicals with Bi2O3–ZnO Nanorods Under a Compact Fluorescent Lamp

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nanoscaled Bi2O3 particles coated on ZnO nanorods (ZNRs) have been fabricated by combining hydrothermal technique with a chemical precipitation method. X-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and UV–vis absorption and photoluminescence studies were adapted to characterize the structure, morphologies, and optical properties of the nanocomposites. The results indicated that small Bi2O3 nanoparticles were well distributed on the surfaces of ZNRs. And the Bi2O3–ZNR nanocomposites showed high charge separation efficiency and •OH generation ability as evidenced by photoluminescence spectra. Under irradiation of a 55-W compact fluorescent lamp, the Bi2O3–ZNR nanocomposites demonstrated photocatalytic activities higher than pure ZNRs in the degradation of two endocrine-disrupting chemicals, phenol and methylparaben, which might be attributed to the high separation efficiency of photogenerated electron–hole pairs based on the cooperative role of Bi2O3 loading on ZNRs. Moreover, the Bi2O3–ZNR nanocomposite could be easily recovered and reused due to their one-dimensional nanostructural property. All these characteristics brought enormous benefits of Bi2O3–ZNR nanocomposites to the practical application in indoor environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

References

  • Benotti, M. J., Trenholm, R. A., Vanderford, B. J., Holady, J. C., Stanford, B. D., & Snyder, S. A. (2009). Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environmental Science and Technology, 43, 597–603.

    Google Scholar 

  • Brouwers, M. M., Besselink, H., Bretveld, R. W., Anzion, R., Scheepers, P. T. J., Brouwer, A., et al. (2011). Estrogenic and androgenic activities in total plasma measured with reporter-gene bioassays: relevant exposure measures for endocrine disruptors in epidemiologic studies? Environment International, 37, 557–564.

    Article  CAS  Google Scholar 

  • Flores, N. M., Pal, U., & Mora, E. S. (2011). Photocatalytic behavior of ZnO and Pt-incorporated ZnO nanoparticles in phenol degradation. Applied Catalysis A: General, 394, 269–275.

    Article  Google Scholar 

  • Gultekin, I., & Ince, N. H. (2007). Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. Journal of Environmental Management, 85, 816–832.

    Article  CAS  Google Scholar 

  • Hameed, A., Gombac, V., Montini, T., Felisari, L., & Fornasiero, P. (2009). Photocatalytic activity of zinc modified Bi2O3. Chemical Physics Letters, 483, 254–261.

    Article  CAS  Google Scholar 

  • Harvey, P. W., & Everett, D. J. (2004). Significance of the detection of esters of p-hydroxyybenzoic acid (parabens) in human breast tumours. Journal of Applied Toxicology, 24, 1–4.

    Article  CAS  Google Scholar 

  • He, J., Luo, Q., Cai, Q. Z., Li, X. W., & Zhang, D. Q. (2011). Microstructure and photocatalytic properties of WO3/TiO2 composite films by plasma electrolytic oxidation. Materials Chemistry and Physics, 129, 242–248.

    Article  CAS  Google Scholar 

  • Huang, W. B., & Chen, C. Y. (2010). Photocatalytic degradation of diethyl phthalate (DEP) in water using TiO2. Water, Air, and Soil Pollution, 207, 349–355.

    Article  CAS  Google Scholar 

  • Ishibashi, K. I., Fujishima, A., Watanabe, T., & Hashimoto, K. (2000). Quantum yields of active oxidative species formed on TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 134, 139–142.

    Article  CAS  Google Scholar 

  • Jia, T. K., Wang, W. M., Long, F., Fu, Z. Y., Wang, H., & Zhang, Q. J. (2009). Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. Journal of Alloys and Compounds, 484, 410–415.

    Article  CAS  Google Scholar 

  • Kaneko, M., & Okura, I. (2002). Photocatalysis science and technology (pp. 261–276). New York: Springer.

    Google Scholar 

  • Kundu, V., Himan, R. L., Maan, A. S., & Goyal, D. R. (2009). Optical and spectroscopic studies of ZnO–Bi2O3–B2O3 glasses. Journal Optoelectronics and Advanced Materials, 11, 1595–1600.

    CAS  Google Scholar 

  • Lam, S. M., Sin, J. C., & Mohamed, A. R. (2010). Parameter effect on photocatalytic degradation of phenol using TiO2-P25/activated carbon (AC). Korean Journal of Chemical Engineering, 27, 1109–1116.

    Article  CAS  Google Scholar 

  • Lam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2012). Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalination and Water Treatment, 41, 131–169.

    Article  CAS  Google Scholar 

  • Lam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2013a). ZnO nanorod surface-decorated by WO3 nanoparticles for photocatalytic degradation of endocrine disruptors under a compact fluorescent lamp. Ceramics International, 39, 2343–2352.

    Article  CAS  Google Scholar 

  • Lam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. (2013b). Green hydrothermal synthesis of ZnO nanotubes for photocatalytic degradation of methylparaben. Materials Letters, 93, 423–426.

    Article  CAS  Google Scholar 

  • Lau, G. K., Zhang, T. S., & Goh, G. K. L. (2010). Photochemical properties of CeO2-coated ZnO nanorods. Journal of Nanoscience and Nanotechnology, 10, 4733–4737.

    Article  CAS  Google Scholar 

  • Liu, J. P., Huang, X. T., Li, Y. Y., Ji, X. X., Li, Z. K., He, X., et al. (2007). Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence and field emission. Journal of Physical Chemistry C, 111, 4990–4997.

    Article  CAS  Google Scholar 

  • Liu, Z. Y., Bai, H. B., Xu, S. P., & Sun, D. D. L. (2011). Hierarchical CuO/ZnO “corn-like” architecture for photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 36, 13473–13480.

    Article  CAS  Google Scholar 

  • Liu, S. Z., Zhang, Y. C., Wang, T. X., & Yang, F. X. (2012). Green synthesis of hollow-nanostructured ZnO2 and ZnO. Materials Letters, 71, 154–156.

    Article  CAS  Google Scholar 

  • Mohajerani, M. S., Lak, A., & Simchi, A. (2009). Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures. Journal of Alloys and Compounds, 485, 616–620.

    Article  CAS  Google Scholar 

  • Nayak, J., Sahu, S. N., Kasuya, J., & Nozaki, S. (2008). CdS–ZnO composite nanorods: synthesis, characterization and application for photocatalytic degradation of 3,4-dihydroxy benzoic acid. Applied Surface Science, 254, 7215–7218.

    Article  CAS  Google Scholar 

  • Pant, H. R., Park, C. H., Pant, B., Jing, L. D. T., Kim, H. Y., & Kim, C. S. (2011). Synthesis, characterization, and photocatalytic properties of ZnO nano-flower containing TiO2 NPs. Ceramics International, 38, 2943–2950.

    Article  Google Scholar 

  • Pardeshi, S. K., & Patil, A. B. (2008). A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Solar Energy, 82, 700–705.

    Article  CAS  Google Scholar 

  • Park, W. I., Kim, D. W., Jung, S. W., & Yi, G. C. (2006). Catalyst-free growth of ZnO nanorods and their nanodevice applications. International Journal of Nanotechnology, 3, 373–395.

    Google Scholar 

  • Pugazhendhi, D., Pope, G. S., & Darbre, P. D. (2005). Oestrogenic activity of p-hydroxybenzoic acid (common metabolite of paraben esters) and methylparaben in human breast cancer cell lines. Journal of Applied Toxicology, 25, 301–309.

    Article  CAS  Google Scholar 

  • Qiu, R. L., Zhang, D. D., Mo, Y. Q., Song, L., Brewer, E., Huang, X. F., et al. (2008). Photocatalytic activity of polymer-modified ZnO under visible light irradiation. Journal of Hazardous Materials, 156, 80–85.

    Article  CAS  Google Scholar 

  • Qiu, Y. F., Yang, M. L., Fan, H. B., Zuo, Y. Z., Shao, Y. Y., Xu, Y. J., et al. (2011). Nanowires of α- and β-Bi2O3: phase-selective synthesis and application in photocatalysis. Crystal Engineering Communications, 13, 1843–1850.

    Article  CAS  Google Scholar 

  • Sin, J. C., Lam, S. M., Mohamed, A. R., & Lee, K. T. (2012). Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: a review. International Journal of Photoenergy. doi:10.1155/2012/185159.

  • Sin, J. C., Lam, S. M., Lee, K. T., & Mohamed, A. R. (2013). Preparation and photocatalytic properties of visible light-driven samarium-doped ZnO nanorods. Ceramics International. doi:10.1016/j.ceramint.2013.01.004.

    Google Scholar 

  • Sobczynski, A., Duczmal, L., & Zmudzinski, W. (2004). Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. Journal of Molecular Catalysis A: Chemical, 213, 225–230.

    Article  CAS  Google Scholar 

  • Walker, C. H. (2009). Organic pollutant: An ecotoxicological perspective (pp. 265–292). Boca Raton: Taylor and Francis.

    Google Scholar 

  • Wang, Y. X., Li, X. Y., Lu, G., Chen, G. H., & Chen, Y. Y. (2008). Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology. Materials Letters, 62, 2359–2362.

    Article  CAS  Google Scholar 

  • Wang, C. H., Shao, C. L., Wang, L. J., Zhang, L. N., Li, X. H., & Liu, Y. C. (2009a). Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers. Journal of Colloid and Interface Sciences, 333, 242–248.

    Article  CAS  Google Scholar 

  • Wang, L. S., Xiao, M. W., Huang, X. J., & Wu, Y. D. (2009b). Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles. Journal of Hazardous Materials, 161, 49–54.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, G., Lu, G. Q., & Cheng, H. M. (2010). Stable photocatalytic hydrogen evolution from water over ZnO–CdS core-shell nanorods. International Journal of Hydrogen Energy, 35, 8199–8205.

    Article  CAS  Google Scholar 

  • Wang, W., Lu, C. H., Ni, Y. R., Song, J. B., Su, M. X., & Xu, Z. Z. (2012). Enhanced visible-light photoactivity of 001 facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catalysis Communications, 22, 19–23.

    Article  CAS  Google Scholar 

  • Yang, J. Y., Lin, Y., Meng, Y. M., & Liu, Y. H. (2012). A two-step route to synthesize highly oriented ZnO nanotube arrays. Ceramics International, 38, 4555–4559.

    Article  CAS  Google Scholar 

  • Zhang, J., Sun, L. D., Liao, C. S., & Yan, C. H. (2002). A simple route towards tubular ZnO. Chemical Communications, 2002, 262–263.

    Article  Google Scholar 

  • Zhang, X. Y., Dai, J. Y., Ong, H. C., Wang, N., Chan, H. L. W., & Choy, C. L. (2004). Hydrothermal synthesis of oriented ZnO nanobelts and their temperature dependent photoluminescence. Chemical Physics Letters, 393, 17–21.

    Article  CAS  Google Scholar 

  • Zhang, L. S., Wang, W. Z., Yang, J., Chen, Z. G., Zhang, W. Q., Zhou, L., et al. (2006). Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst. Applied Catalysis A: General, 308, 105–110.

    Article  CAS  Google Scholar 

  • Zhang, J. H., Liu, H. Y., Wang, Z. L., & Ming, N. B. (2008). Low-temperature growth of ZnO with controllable shapes and band gaps. Journal of Crystal Growth, 310, 2848–2853.

    Article  CAS  Google Scholar 

  • Zhang, D. D., Qiu, R. L., Song, L., Brewer, E., Mo, Y. Q., & Huang, X. F. (2009). Role of oxygen active species in the photocatalytic degradation of phenol using polymer sensitized TiO2 under visible light irradiation. Journal of Hazardous Materials, 163, 843–847.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Research Universiti grant (no. 814176) and a Post Graduate Research Grant Scheme (no. 8045030) from Universiti Sains Malaysia as well as a My PhD scholarship through the Malaysian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Rahman Mohamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, SM., Sin, JC., Abdullah, A.Z. et al. Efficient Photodegradation of Endocrine-Disrupting Chemicals with Bi2O3–ZnO Nanorods Under a Compact Fluorescent Lamp. Water Air Soil Pollut 224, 1565 (2013). https://doi.org/10.1007/s11270-013-1565-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-013-1565-6

Keywords

Navigation