Skip to main content
Log in

Fabrication of Bismuth Vanadate (BiVO4) Nanoparticles by a Facile Route

  • Regular Paper
  • Published:
Transactions on Electrical and Electronic Materials Aims and scope Submit manuscript

Abstract

Monoclinic bismuth vanadate (m-BiVO4) has attracted many researchers as an advanced photocatalyst for hydrogen production via water splitting and degradation of organic contaminants. In this study, pure m-BiVO4 nanoparticles were fabricated by an easy reproducible solid state route at different temperatures (500 °C, 550 °C, 600 °C, 650 °C and 700 °C) for 2 h. The synthesized materials were characterized by X-ray Diffractometer where all the diffraction patterns reveal characteristic peaks corresponding to m-BiVO4 with space group C2/c. Obtained m-BiVO4 particles have the lattice parameters: a = 7.2477 Å, b = 11.6970 Å, c = 5.0900 Å and the volume of the unit cell is 309.23 (106 pm3). Fourier Transform Infrared spectroscopy exhibits formation of Bi–O bond in the prepared nano powders. Ultraviolet–Visible diffuse reflectance spectroscopy suggests that nanostructured BiVO4 particles possess strong energy absorption properties both in visible and ultraviolet region. The particles show red shift of band gap as the calcination temperature rises and possible reasons have been discussed. Energy-dispersive X-ray spectroscopy confirms presence of Bi, V, and O without any contaminant, while particle’s morphology was investigated using Field Emission Scanning Electron Microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.W. Chen, A.K. Ray, Appl. Catal. B: Environ. 23, 143–157 (1999)

    Article  Google Scholar 

  2. H. Zhou, D.W. Smith, J. Environ. Eng. Sci 1, 247–264 (2002)

    Article  CAS  Google Scholar 

  3. V. Rajalingam, Synthesis and characterization of BiVO4 nanostructured materials: application to photocatalysis. Dissertation, Universit´e du Maine (2014)

  4. F.M. Toma, J.K. Cooper, V. Kunzelmann, M.T. McDowell, J. Yu, D.M. Larson, N.J. Borys, C. Abelyan, J.W. Beeman, K. Man, J. Yang, L. Chen, M.R. Shaner, J. Spurgeon, F.A. Houle, K.A. Persson, I.D. Sharp, Nat. Commun. 7, 12012 (2016)

    Article  Google Scholar 

  5. K. Ordon, Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications. Dissertation, Université du Maine (2018)

  6. M.J. Madiabu, J. Gunlazuardi, AIP Conf. Proc. 2023, 020079 (2018)

    Article  CAS  Google Scholar 

  7. A. Fernandez, G. Lassaletta, V.M. Jimenez, A. Justo, A.R. Gonzalez Elipe, J.M. Herrmann, H. Tahiri, Y. Aitichou, Appl. Catal. B: Environ. 7, 49–63 (1995)

    Article  CAS  Google Scholar 

  8. C. Minero, E. Pelizzetti, P. Pichat, M. Sega, M. Vincenti, Environ. Sci. Technol. 29, 2226–2234 (1995)

    Article  CAS  Google Scholar 

  9. S.S. Wu, H.Q. Cao, S.F. Yin, X.W. Liu, X.R. Zhang, J. Phys. Chem. C 113, 17893–17898 (2009)

    Article  CAS  Google Scholar 

  10. L. Gao, L.Q. Jiang, Mater. Chem. Phys. 91, 313–316 (2005)

    Article  CAS  Google Scholar 

  11. M.A. Gondal, K. Hayat, M.M. Khaled, S. Ahmed, A.M. Shemsi, Appl. Catal. A 393, 122–129 (2011)

    Article  CAS  Google Scholar 

  12. W.Z. Wang, H.L. Xu, W. Zhu, J. Phys. Chem. B 110, 13829–13834 (2006)

    Article  CAS  Google Scholar 

  13. K. Rajeshwar, S. Somasundaram, C.R.N. Chenthamarakshan, N.R. de Tacconi, Int. J. Hydrog. Energy 32, 4661–4669 (2007)

    Article  CAS  Google Scholar 

  14. M.A.A. Mamun, A.F.M.M. Hossain, M. Hasan, M.M. Rahman, Hydrothermal Synthesis and Characterization of Bismuth Vanadate Photocatalyst, in Proceedings of the 1st International Conference on Engineering Materials and Metallurgical Engineering, Bangladesh Council of Scientific and Industrial Research, Dhaka, 22–24 December 2016

  15. H. Cai, L. Cheng, F. Xu, H. Wang, W. Xu, F. Li, R. Soc, Open Sci. 5, 180752 (2018)

    Google Scholar 

  16. A. Fujishima, K. Honda, Nature 238(5358), 37–38 (1972)

    Article  CAS  Google Scholar 

  17. A. Kudo, K. Ueda, H. Kato, I. Mikami, Cat. Let. 53, 229 (1998)

    Article  CAS  Google Scholar 

  18. P.H. Le, N.T. Kien, C.N. Van, Recent Advances in BiVO 4 - and Bi 2 Te 3 -Based Materials for High Efficiency-Energy Applications (Intech Open, London, 2018)

    Book  Google Scholar 

  19. S. Dolic, D. Jovanovic, L. Zur, M. Cincović, M. Ferrari, M. Dramićanin, Synthesis, multifunctional properties and applications of bivo4 nanoparticles (Conference Presentation), in Proceeding of SPIE 10683, Fiber Lasers and Glass Photonics: Materials through Applications, 106831G (23 May 2018)

  20. F. Rullens, A. Laschewsky, M. Devillers, Chem. Mater. 18, 771 (2006)

    Article  CAS  Google Scholar 

  21. M.F. Rahman, M.S. Haque, M.H. Rizvi, M.A. Matin, M.A. Hakim, M.F. Islam, in Abstracts of the International Conference on Nanotechnology and Condensed Matter Physics, Bangladesh University of Engineering and Technology, Dhaka, 11–12 January 2018

  22. M. Noor, M.A.A. Mamun, M.A. Matin, M.F. Islam, S. Haque, F. Rahman, M.N. Hossain, M.A. Hakim, Effect of pH Variation on Structural, Optical and Shape Morphology of BiVO4 Photocatalysts, in 10th International Conference on Electrical and Computer Engineering (IEEE, Dhaka, 20–22 December, 2018). https://doi.org/10.1109/icece.2018.8636721

  23. H. Zhao, F. Tian, R. Wang, R. Chen, Rev. Adv. Sci. Eng. 3, 3–27 (2014)

    Article  Google Scholar 

  24. Z. Wang, W. Luo, S. Yan, J. Feng, Z. Zhao, Y. Zhu, Z. Li, Z. Zou, Cryst. Eng. Commun. 13, 6674–6679 (2011)

    Article  CAS  Google Scholar 

  25. P. Madhusudan, J. Yu, W. Wang, B. Cheng, G. Liu, Dal. Trans. 41, 14345–14353 (2012)

    Article  CAS  Google Scholar 

  26. A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim, S.H. Wei, Chem. Mater. 21, 3 (2009)

    Article  CAS  Google Scholar 

  27. Z. Zhao, Z. Li, Z. Zou, Phys. Chem. Chem. Phys. 13, 4746–4753 (2011)

    Article  CAS  Google Scholar 

  28. U.M.G. Perez, S.S. Guzman, A.M. de la Cruz, J. Peral, Int. J. Electrochem. Sci. 7, 9622–9632 (2012)

    Google Scholar 

  29. D.P. Dubal, K. Jayaramulu, R. Zboril, R.A. Fischer, P.G. Romero, J. Mater. Chem. A 6, 6096 (2018)

    Article  CAS  Google Scholar 

  30. T.L. Kim, M.J. Choi, H.W. Jang, Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. MRS Commun. 8, 3 (2018)

    Article  CAS  Google Scholar 

  31. M. Guo, Q. He, W. Wang, J. Wu, W. Wang, J. Wuhan Univ. Technol.-Mater. Sci. Edit. 31, 791 (2016). https://doi.org/10.1007/s11595-016-1447-z

    Article  CAS  Google Scholar 

  32. M. Peng, J. Shi, Z. Wang, L. Li, Penglong CHEN Improvement of synthesis experiment of bismuth vanadate pigment by pH optimization. Univ. Chem. 33(8), 26–31 (2018)

    Google Scholar 

  33. M.V. Malashchonak, E.A. Streltsov, D.A. Kuliomin, A.I. Kulak, A.V. Mazanik, Monoclinic bismuth vanadate band gap determination by photoelectrochemical spectroscopy. Mater. Chem. Phys. (2017). https://doi.org/10.1016/j.matchemphys.2017.08.053

    Article  Google Scholar 

  34. A.N. Zulkifili, A. Fujiki, S. Kimijima, Appl. Sci. 8, 216 (2018)

    Article  CAS  Google Scholar 

  35. S.D. Dolića, D.J. Jovanovića, K. Smitsb, B. Babićc, M.M. Cincovića, S. Porobića, M.D. Dramićanina, Ceram. Int. 44, 17953–17961 (2018)

    Article  CAS  Google Scholar 

  36. V. Sivakumar, R. Suresh, K. Giribabu, V. Narayanan, Cogent. Chem. 1, 1074647 (2015)

    Article  Google Scholar 

  37. A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121(49), 11459–11467 (1999)

    Article  CAS  Google Scholar 

  38. S. Khademinia, M. Behzad, H.S. Jahromi, RSC Adv. 5, 24313–24318 (2015)

    Article  CAS  Google Scholar 

  39. J. Yu, Y. Zhang, A. Kudo, J. Solid State Chem. 182, 223–228 (2009)

    Article  CAS  Google Scholar 

  40. S.M. Thalluri, C.M. Suarez, M. Hussain, S. Hernandez, A. Virga, G. Saracco, N. Russo, Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO4 for water oxidation. Ind. Eng. Chem. Res. 52, 17414–17418 (2013). https://doi.org/10.1021/ie402930x

    Article  CAS  Google Scholar 

  41. Y.K. Kho, W.Y. Teoh, A. Iwase, L. Maedler, A. Kudo, R. Amarl, ACS. Appl. Mater. Interfaces 3(6), 1997–2004 (2011)

    Article  CAS  Google Scholar 

  42. C. Ravidhas, A.J. Josephine, P. Sudhagar, A. Devadoss, C. Terashima, K. Nakata, A. Fujishima, A.M.E. Raj, C. Sanjeeviraja, Mater. Sci. Semicond. Process. 30, 343–351 (2015)

    Article  CAS  Google Scholar 

  43. Q. Jia, K. Iwashina, A. Kudo, Proc. Natl. Acad. Sci. 109, 11564–11569 (2012)

    Article  CAS  Google Scholar 

  44. K. Rajeshwar, N.R. Tacconi, Chem. Soc. Rev. 38, 1984–1998 (2009)

    Article  CAS  Google Scholar 

  45. S. Obregón, A. Caballero, G. Colón, Appl. Catal. B: Environ. 117–118, 59–66 (2012)

    Article  CAS  Google Scholar 

  46. P.M. Shafi, A.C. Bose, AIP Adv. 5, 057137 (2015)

    Article  CAS  Google Scholar 

  47. W. Qin, J.A. Szpunar, Phil. Mag. Lett. 85, 653 (2005)

    Article  CAS  Google Scholar 

  48. K. Reimann, R. Wurschum, J. Appl. Phys. 81, 7186 (1997)

    Article  CAS  Google Scholar 

  49. T.R. Malow, C.C. Koch, Acta Mater. 45, 2177 (1997)

    Article  CAS  Google Scholar 

  50. W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Philos. Mag. Lett. 88(3), 169–179 (2008)

    Article  CAS  Google Scholar 

  51. D.H. Ping, D.X. Li, H.Q. Ye, J. Mater. Sci. Lett. 14, 1536 (1995)

    Article  CAS  Google Scholar 

  52. K. Lu, Mater. Sci. Eng. R. 16, 161 (1996)

    Article  Google Scholar 

  53. K. Lu, R. Lück, B. Predel, Mater. Sci. Eng. A. 179–180, 536 (1994)

    Article  Google Scholar 

  54. P.P. Chattopadhyay, P.M.G. Nambissan, S.K. Pabi et al., Phys. Rev. B. 63, 054107 (2001)

    Article  CAS  Google Scholar 

  55. W. Qin, J.A. Szpunar, Philos. Mag. Lett. 85(12), 649–656 (2005)

    Article  CAS  Google Scholar 

  56. J.W. Christian, The Theory of Transformations in Metals and Alloys, Part 1 (Pergamon Press, Oxford, 2002), pp. 202–203

    Google Scholar 

  57. M. Dapiaggi, C.A. Geiger, G. Artioli, Am. Miner. 90, 506 (2005)

    Article  CAS  Google Scholar 

  58. R. Venkatesan, S. Velumani, A. Kassiba, Mat. Chem. Phys. 135, 842–848 (2012)

    Article  CAS  Google Scholar 

  59. H.D. Telpande, D.V. Parwate, J. Appl. Chem. 8(5), 28–37 (2015)

    CAS  Google Scholar 

  60. P. Kubelka, F. Munk, EinBeitrag ZurOptik Der Farbanstriche. Zeitschriftfür Technische Physik. 12, 593–601 (1931)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET) for providing assistance regarding characterization and preparation of the specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Rahman.

Ethics declarations

Conflict of interest

There is no conflict of interest in writing and publishing the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.F., Haque, M.S., Hasan, M. et al. Fabrication of Bismuth Vanadate (BiVO4) Nanoparticles by a Facile Route. Trans. Electr. Electron. Mater. 20, 522–529 (2019). https://doi.org/10.1007/s42341-019-00144-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42341-019-00144-4

Keywords

Navigation