Skip to main content
Log in

Fabrication of BiVO4: Effect of structure and morphology on photocatalytic activity and its methylene blue decomposition mechanism

  • Advanced materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

BiVO4 photocatalysts were synthesized by a surfactant free hydrothermal method without any further treatments, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), Raman spectroscopy, and Brunauer-Emmett-Teller (BET) surface area techniques. The photocatalytic activity was evaluated for the degradation of the methylene blue (MB) under visible light irradiation. Seen from the structural and morphological characterization, it is stated that the obtained samples present monoclinic phase, and the pH value has significant influence on the morphologies. The enhanced photocatalytic performance was associated with its crystallinity, unique morphology, band gap energy, BET specific surface area, surface charge and adsorption capacity. The recycle experiments results show that the BiVO4 photocatalysts have excellent photo-stability, and we deduced a possible mechanism by examining the effects of the active species involved in the photocatalytic process for MB photocatalytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li CJ, Wang SP, Wang T, et al. Monoclinic Porous BiVO4 Networks Decorated by Discrete G-C3N4 Nano-islands with Tunable Coverage for Highly Efficient Photocatalysis[J]. Small, 2014: 1–8

    Google Scholar 

  2. Hu Y, Li D Z, Sun FQ, et al. One-pot Template-free Synthesis of Heterophase BiVO4 Microspheres with Enhanced Photocatalytic Activity[J]. RSC Adv., 2015, 5: 54882–54889

    Article  Google Scholar 

  3. Gu SN, Li WJ, Wang FZ, et al. Synthesis of Buckhorn-like BiVO4 with a Shell of CeOx Nanodots: Effect of Heterojunction Structure on the Enhancement of Photocatalytic Activity[J]. Appl. Catal. B: Environ., 2015, 170–171: 186–194

    Article  Google Scholar 

  4. Obregón S, Colón G. Heterostructured Er3+ Doped BiVO4 with Exceptional Photocatalytic Performance by Cooperative Electronic and Luminescence Sensitization Mechanism[J]. Appl. Catal. B: Environ., 2014, 158–159: 242–249

    Article  Google Scholar 

  5. Li JQ, Cui MM, Liu ZX, et al. BiVO4 Hollow Spheres with Hierarchical Microstructures and Enhanced Photocatalytic Performance under Visible-light Illumination[J]. Phys. Status Solidi A, 2013, 9: 1881–1887

    Google Scholar 

  6. Zhang ZJ, Wang WZ, Shang M, et al. Photocatalytic Degradation of Rhodamine B and Phenol by Solution Combustion Synthesized BiVO4 Photocatalyst[J]. Catal. Commun., 2010, 11: 982–986

    Article  Google Scholar 

  7. Fan HM, Jiang TF, Li HY, et al. Effect of BiVO4 Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity[J]. J. Phys. Chem. C, 2012, 116: 2425–2430

    Article  Google Scholar 

  8. Tokunaga S, Kato H, Kudo A. Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties[J]. Chem. Mater., 2001, 13: 4624–4628

    Article  Google Scholar 

  9. Cheng B, Wang WG, Shi L, et al. One-pot Template-free Hydrothermal Synthesis of Monoclinic BiVO4 Hollow Microspheres and Their Enhanced Visible-light Photocatalytic Activity[J]. Int. J. Photoenergy, 2012: 1–10

    Google Scholar 

  10. Shen Y, Huang ML, Huang Y, et al. The Synthesis of Bismuth Vanadate Powders and Their Photocatalytic Properties under Visible Light Irradiation[J]. J. Alloys Compd., 2010, 496: 287–292

    Article  Google Scholar 

  11. Ke DN, Peng TY, Ma L, et al. Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light[J]. Inorg. Chem., 2009, 48: 4685–4691

    Article  Google Scholar 

  12. Xu J, Wang WZ, Wang J, et al. Controlled Fabrication and Enhanced Photocatalystic Performance of BiVO4@CeO2 Hollow Microspheres for the Visible-light-driven Degradation of Rhodamine B[J]. Appl. Surf. Sci., 2015, 349: 529–537

    Article  Google Scholar 

  13. Jiang HY, Meng X, Dai HX, et al. High-performance Porous Spherical or Octapod-like Single-crystalline BiVO4 Photocatalysts for the Removal of Phenol and Methylene Blue under Visible-light Illumination[J]. J. Hazard. Mater., 2012, 217–218: 92–99

    Article  Google Scholar 

  14. Thalluri SM, Hussain M, Saracco G, et al. Green-synthesized BiVO4 Oriented Along {040} Facets for Visible Light-driven Ethylene Degradation[J]. Ind. Eng. Chem. Res., 2014, 53: 2640–2646

    Article  Google Scholar 

  15. Eda S, Fujishima M, Tada H. Low Temperature-synthesis of BiVO4 Nanorods Using Polyethylene Glycol as a Soft Template and the Visible-light-activity for Copper Acetylacetonate Decomposition[J]. Appl. Catal. B: Environ., 2012, 125: 288–293

    Article  Google Scholar 

  16. Dong SY, Feng JL, Li YK, et al. Shape-controlled Synthesis of BiVO4 Hierarchical Structures with Unique Natural-sunlight-driven Photocatalytic Activity[J]. Appl. Catal. B: Environ., 2014, 152–153: 413–424

    Article  Google Scholar 

  17. Sun JH, Yang H. A Polyacrylamide Gel Route to Photocatalytically Active BiVO4 Particles with Monoclinic Scheelite Structure[J]. Ceram. Int., 2014, 40: 6399–6404

    Article  Google Scholar 

  18. Jiang HY, Dai HX, Meng X, et al. Hydrothermal Fabrication and Visible-light-driven Photocatalytic Properties of Bismuth Vanadate with Multiple Morphologies and/or Porous Structures for Methyl Orange Degradation[J]. J.Environ. Sci., 2012, 3: 449–457

    Article  Google Scholar 

  19. García-Péreza UM, Martínezde la Cruzb A, Sepúlveda-Guzmánb S, Peral J. Low-temperature Synthesis of BiVO4 Powders by Pluronic-Assisted Hydrothermal Method: Effect of the Surfactant and Temperature on the Morphology and Structural Control[J]. Ceram. Int., 2014, 40: 4631–4638

    Article  Google Scholar 

  20. Li F, Yang CY, Li QG, et al. The pH-controlled Morphology Transition of BiVO4 Photocatalysts from Microparticles to Hollow Microspheres [J]. Mater. Lett., 2015, 145: 52–55

    Article  Google Scholar 

  21. Sun SM, Wang WZ, Zhou L, et al. Efficient Methylene Blue Removal Over Hydrothermally Synthesized Starlike BiVO4[J]. Ind. Eng. Chem. Res., 2009, 48: 1735–1739

    Article  Google Scholar 

  22. Shen Y, Huang M, Huang Y, et al. The Synthesis of Bismuth Vanadate Powders and Their Photocatalytic Properties under Visible Light Irradiation[J]. J. Alloys Compd., 2010, 496: 287–292

    Article  Google Scholar 

  23. Shang M, Wang WZ, Ren J, et al. A Novel BiVO4 Hierarchical Nanostructure: Controllable Synthesis, Growth Mechanism, and Application in Photocatalysis[J]. Cryst. Eng. Comm., 2010, 12: 1754–1758

    Article  Google Scholar 

  24. Obregón S, Caballero A, Colón G. Hydrothermal Synthesis of BiVO4: Structural and Morphological Influence on the Photocatalytic Activity [J]. Appl. Catal. B: Environ., 2012, 117–118: 59–66

    Article  Google Scholar 

  25. Yu JQ, Kudo A. Effects of Structural Variation on the Photocatalytic Performance of Hydrothermally Synthesized BiVO4[J]. Adv. Funct. Mater., 2006, 16: 2163–2169

    Article  Google Scholar 

  26. Ai ZH, Lee SC. Morphology-dependent Photocatalytic Removal of NO by Hierarchical BiVO4 Microboats and Microspheres under Visible Light[J]. Appl. Surf. Sci., 2013, 280: 354–359

    Article  Google Scholar 

  27. Kho YK, Teoh WY, Iwase A, et al. Flame Preparation of Visible-light-Responsive BiVO4 Oxygen Evolution Photocatalysts with Subsequent Activation Via Aqueous Route[J]. ACS Appl. Mater. Inter., 2011, 3: 1997–2004

    Article  Google Scholar 

  28. Yao MM, Liu MX, Gan LH, et al. Monoclinic Mesoporous BiVO4: Synthesis and Visible-light-driven Photocatalytic Property[J]. Colloids Surf. A: Physicochem. Eng. Aspects, 2013, 433: 132–138

    Article  Google Scholar 

  29. Zhang AP, Zhang JZ, Cui NY, et al. Effects of pH on Hydrothermal Synthesis and Characterization of Visible-light-driven BiVO4 Photocatalyst[J]. J. Mol. Catal. A-Chem., 2009, 304: 28–32

    Article  Google Scholar 

  30. Zhou B, Zhao X, Liu HJ, Qu J, et al. Synthesis of Visible-light Sensitive M-BiVO4 (M = Ag, Co, and Ni) for the Photocatalytic Degradation of Organic Pollutants[J]. Separ. Purif. Tech., 2011, 77: 275–282

    Article  Google Scholar 

  31. Zhou Y, Vuille K, Heel A, et al. An Inorganic Hydrothermal Route to Photocatalytically Active Bismuth Vanadate[J]. Appl. Catal. A: Gene., 2010, 375: 140–148

    Article  Google Scholar 

  32. Wen LP, Liu BS, Liu C, et al. Preparation, Characterization and Photocatalytic Property of Ag-loaded TiO2 Powders Using Photodeposition Method[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2008, 24(2): 258–263

    Article  Google Scholar 

  33. Guo WF, Li HP, Teng WX, et al. Effect of the pH Value of Synthesis Conditions on the Phase Structure and Photocatalytic Properties of Bismuth Molybdates Synthesized Using a Hydrothermal Method[J]. Nanomater. Nanotechnol., 2015, 5: 24

    Google Scholar 

  34. Lei LW, Jin HH, Zhang Q, et al. A Novel Enhanced Visible-light-driven Photocatalyst Via Hybridization of Nanosized BiOCl and Graphitic C3N4[J]. Dalton Trans., 2015, 44: 795–803

    Article  Google Scholar 

  35. Jiang HY, Dai HX, Meng X, et al. Porous Olive-like BiVO4: Alcohohydrothermal Preparation and Excellent Visible-light-driven Photocatalytic Performance for the Degradation of Phenol[J]. Appl. Catal. B: Environ., 2011, 105: 326–334

    Article  Google Scholar 

  36. Meng X, Zhang L, Dai HX, et al. Surfactant-assisted Hydrothermal Fabrication and Visible-light-driven Photocatalytic Degradation of Methylene blue Over Multiple Morphological BiVO4 Singlecrystallites[ J]. Mater. Chem. Phys., 2011, 125: 59–65

    Article  Google Scholar 

  37. Li GS, Zhang DQ, Yu JC. Ordered Mesoporous BiVO4 Through Nanocasting: a Superior Visible Light-driven Photocatalyst[J]. Chem. Mater., 2008, 20: 3983–3992

    Article  Google Scholar 

  38. Yang XF, Cui HY, Li Y, et al. Fabrication of Ag3PO4-graphene Composites with Highly Efficient and Stable Visible Light Photocatalytic Performance[J]. ACS Catal., 2013, 3: 363–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weimin Wang  (王为民).

Additional information

Funded by the National Science Foundation of China (U12301013) and the National Science Foundation of China (51521001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., He, Q., Wang, W. et al. Fabrication of BiVO4: Effect of structure and morphology on photocatalytic activity and its methylene blue decomposition mechanism. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 791–798 (2016). https://doi.org/10.1007/s11595-016-1447-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1447-z

Key words

Navigation