Skip to main content
Log in

Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Understanding the electronic structure of photocatalysts is crucial for enhancing their efficiency. In this study, we have successfully synthesized novel monoclinic bismuth vanadate (Bi7VO13) nanoparticles using the gas phase condensation technique, with an average particle size of 40 nm. To investigate the crystallographic structure of the as-synthesized nanoparticles, we conducted X-ray diffraction (XRD) experiments. Additionally, we employed advanced characterization techniques to provide a detailed analysis of the electronic structure of Bi7VO13 nanoparticles. This study presents the first report on the electronic structure of Bi7VO13 nanoparticles using the aforementioned spectroscopic methods. Remarkably, the investigation revealed that the valence band maximum (VB) and conduction band minimum (CB) are dominated by O 2p and V 3d states, respectively.

Moreover, X-ray absorption spectroscopy (XAS) reveals splitting the V 3d conduction band state into a triplet d-manifold at the V L-edge and O K-edge. This splitting arises from the lattice distortion induced by lone pairs, which gives rise to a band gap of 2.28 eV. Under visible light irradiation, the Bi7VO13 nanoparticles exhibit efficient visible light absorption, highlighting their potential for photocatalytic applications. Notably, our experiments demonstrated outstanding photodegradation properties of methylene blue, serving as a model effluent, further underscoring the photocatalytic progress of Bi7VO13 nanoparticles. In conclusion, this research explains the functioning of Bi7VO13 photocatalysts and opens the doors for utilizing their potential to generate a cleaner and brighter future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Suresh, A. Sivasamy, J. Environ. Chem. Eng. 6, 3745–3756 (2018)

    Article  CAS  Google Scholar 

  2. S. Zheng, W. Jiang, Y. Cai, D.D. Dionysiou, K.E. O’Shea, Catal. Today 224, 83–88 (2014)

    Article  CAS  Google Scholar 

  3. Z. Hao, L. Xu, B. Wei, L. Fan, Y. Liu, M. Zhanga, H. Gao, RSC Adv. 5, 12346–12353 (2015)

    Article  CAS  Google Scholar 

  4. M.Y. Wang, J. Ioccozia, L. Sun, C.J. Lin, Z.Q. Lin, Energy Environ. Sci. 7, 2182–2202 (2014)

    Article  CAS  Google Scholar 

  5. A. Kusior, K. Michalec, P. Jelen, M. Radecka, Appl. Surf. Sci. 476, 342–352 (2019)

    Article  CAS  Google Scholar 

  6. V. Dutta, S. Sharma, P. Raizada, V.K. Thakur, A. Aslam, P. Khan, V. Saini, A.M. Asiri, P. Singh, J. Environ. Chem. Eng. 9, 105018 (2021)

    Article  CAS  Google Scholar 

  7. A.P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano, Front Chem. Sci. Eng. 12, 878–892 (2018)

    Article  CAS  Google Scholar 

  8. S. Tokunga, H. Kato, A. Kudo, Chem. Mater. 13, 4624–4628 (2001)

    Article  Google Scholar 

  9. Y..H..B. Liao, J..X.. Wang, J..S.. Lin, W..H.. Wan, C..C.. Chen, Catal. Today. 174, 148–159 (2011)

    Article  CAS  Google Scholar 

  10. Y. Lu, L. Chen, Y. Huang, H. Cheng, S. Kim, H. Seo, J. Alloys Compd. 640, 226–232 (2015)

    Article  CAS  Google Scholar 

  11. B. Scola Rodrigues, C.M. Branco, P. Corio, J.S. Souza, Cryst. Growth Des. 20, 3673–3685 (2020)

  12. G.S. Kamble, T.S. Natarajan, S.S. Patil, M. Thomas, R.K. Chougale, P.S. Sanadi, U.S. Sidharth, Y.C. Ling, Nanomaterials 13, 1528 (2023)

    Article  CAS  Google Scholar 

  13. A. Kudo, K. Omori, H. Katol, J. Am. Chem. Soc. 121, 11459–11467 (1999)

    Article  CAS  Google Scholar 

  14. S.S. Kekade, P.V. Gaikwad, S.A. Raut, R.J. Choudhary, V.L. Mathe, D.M. Phase, A.L. Kshirsagar, S.I. Patil, ACS Omega 3, 5853–5864 (2018)

    Article  CAS  Google Scholar 

  15. S. Gong, Q.F. Han, J.W. Zhu, X. Wand, J.D. Lu, Mater. Res Bull. 76, 222–228 (2016)

    Article  CAS  Google Scholar 

  16. J.L. Hu, W.J. Fan, W.Q. Ye, C.J. Huang, X. Qiu, Appl. Catal. B 158, 182–189 (2014)

    Article  Google Scholar 

  17. M.X. Du, Y. Du, Y.B. Feng, K. Yang, X.J. Lv, N. Jiang, Y. Liu, Carbohydr. Polym. 195, 393–400 (2018)

    Article  CAS  Google Scholar 

  18. H.B. Li, Z.J. Yang, J.N. Zhang, Y.C. Huang, H.B. Ji, Y.X. Tong, Appl. Surf. Sci. 423, 1188–1197 (2017)

    Article  CAS  Google Scholar 

  19. C.Y. Wang, X. Zhang, X.N. Song, W.K. Wang, H.Q. Yu, ACS Appl. Mater. Interfaces 8, 5320–5326 (2016)

    Article  Google Scholar 

  20. S. Jonjana, A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 172, 11–14 (2016)

    Article  CAS  Google Scholar 

  21. D.P. Macwan, C. Balasubramanian, P.N. Dave, S. Chaturvedi, J. Saudi Chem. Soc. 18, 234–244 (2014)

    Article  CAS  Google Scholar 

  22. S.A. Raut, N.S. Kanhe, S.V. Bhoraskar, A.K. Das, V.L. Mathe, J. Appl. Phys. 116, 163913 (1–6) (2014)

    Article  Google Scholar 

  23. Y. Pu, Y. Li, Y. Huang, S. Kim, P. Cai, H.J. Seo, Mater. Lett. 141, 73–75 (2015)

    Article  CAS  Google Scholar 

  24. O. Attos, J. Non-Cryst. Solids 210, 163–170 (1997)

    Article  CAS  Google Scholar 

  25. I.D. Brown, K.K. Wu, Acta Crystallogr. B 32, 1957–1959 (1976)

    Article  Google Scholar 

  26. F.D. Hardcastle, I.E. Wachs, Solid State Ion. 45, 201–213 (1991)

    Article  CAS  Google Scholar 

  27. Z. Ai, Y. Huang, S. Lee, L. Zhang, J. Alloys Compd. 509, 2044–2049 (2011)

    Article  CAS  Google Scholar 

  28. M. Schlesinger, M. Weber, S. Schulze, M. Hietschold, M. Mehring, Chem. Open 2, 146–155 (2013)

    CAS  Google Scholar 

  29. W. Xiaohong, Q. Wei, L. Li, G. Yun, X. Zhaoyang, Catal. Commun. 10, 600–604 (2009)

    Article  Google Scholar 

  30. H. Hua Li, K.W. Li, H. Wang, Mater. Chem. Phys. 116, 134–142 (2009)

  31. M. Zhang, C. Shao, P. Zhang, C. Su, X. Zhang, P. Liang, Y. Sun, Y. Liu, J. Hazard. Mater. 225, 155–163 (2012)

    Article  Google Scholar 

  32. Y. Wan, S. Wang, W. Luo, L. Zhao, Int. J. Photoenergy 1155, 1–7 (2012)

    Article  Google Scholar 

  33. A. Chaudhuri, L. Mandal, X. Chi, M. Yang, M.C. Scott, M. Motapothula, X.J. Yu, P. Yang, Y. Shao-Horn, T. Venkatesan, A.T.S. Wee, A. Rusydi, Phys. Rev. B 97, 195150 (1–8) (2018)

    Article  Google Scholar 

  34. T. Zhang, T.K. Oyama, S. Horikoshi, H. Hidaka, J. Zhao, N. Serpone, Sol. Energy Mater. Sol Cells 73, 287–303 (2002)

    Article  CAS  Google Scholar 

  35. G. Liu, S. Liu, Q. Lu, H. Sun, F. Xu, G. Zhao, J. Sol-Gel Sci. Technol. 70, 24–32 (2014)

    Article  CAS  Google Scholar 

  36. G. Liu, S. Li, Y. Lu, J. Zhang, Z. Feng, C. Li, J. Alloys Comp. 689, 787–799 (2016)

    Article  CAS  Google Scholar 

  37. N.S. Azhar, M.F.M. Taib, O.H. Hassan, M.Z.A. Yahya, A.M.M. Ali, Mater. Res. Express 4(034002), 1–7 (2016)

    Google Scholar 

  38. Z. Ai, Y. Huang, S. Lee., L. Zhanga, J. Alloys Compd. 509, 2044–2049 (2011)

  39. A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, J. Mol. Catal. A: Chem. 304, 28–32 (2009)

    Article  CAS  Google Scholar 

  40. G.S. Kamble, Y.C. Ling, Sci. Rep. 10, 12993 (2020)

    Article  CAS  Google Scholar 

  41. Y. Lu, Y. Pu, J. Wang, C. Qin, C. Chen, H.J. Seo, Appl. Surf. Sci. 347, 719–726 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank UGC-BSR, Delhi, for the financial assistance to conduct this research. The authors also thank Mr. Avinash Wadiker for his help in XPS and VBS measurements at the AIPES beam line on INDUS-1.

Funding

Dr. Kekade S. S. reports that UGC-BSR, Delhi provided financial support.

Author information

Authors and Affiliations

Authors

Contributions

SSK and SAR designed experiments and characterized samples. SSK and SAR synthesized the sample and analyzed the data. SSK carried out XPS, VBS, and XAS measurements and analyzed data with RJC and DP. The manuscript was written through the contribution of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Shankar S. Kekade.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 319.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kekade, S.S., Raut, S.A., Choudhary, R.J. et al. Visible light-driven photocatalyst δ‑Bi7VO13 nanoparticles synthesized by thermal plasma. J Mater Sci: Mater Electron 34, 2326 (2023). https://doi.org/10.1007/s10854-023-11732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11732-9

Navigation