Skip to main content

Advertisement

Log in

Re-thinking ‘Concrete to Abstract’ in Mathematics Education: Towards the Use of Symbolically Structured Environments

  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

In this article, we question the prevalent assumption that teaching and learning mathematics should always entail movement from the concrete to the abstract. Such a view leads to reported difficulties in students moving from manipulatives and models to more symbolic work, moves that many students never make, with all the implications this has for life chances. We propose working in ‘symbolically structured environments’ as an alternative way of characterising students’ direct engagement with the abstract and exemplify two such environments, both of which involve early number learning. We additionally propose some roles for the teacher working in a symbolically structured environment.

Résumé

Dans cet article, nous remettons en question l’hypothèse, la plus répandue, selon laquelle l’enseignement et l’apprentissage des mathématiques doit toujours impliquer un passage du concret à l’abstrait. Une telle optique conduit à certaines difficultés signalées chez de nombreux étudiants qui doivent passer des manipulations et des modèles à un travail plus axé sur les symboles, passage que beaucoup d’entre eux n’arrivent jamais à faire, avec tout ce que cela implique pour leurs perspectives de réussite. Nous proposons le travail dans des « environnements structurés symboliquement » comme une façon différente de caractériser l’engagement direct des étudiants dans le raisonnement abstrait, et nous présentons deux environnements de ce type qui impliquent tous deux l’apprentissage précoce des nombres. Nous proposons en outre certains rôles pour les enseignants qui œuvrent dans un environnement structuré symboliquement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This resonates with how the mathematician Jacques Hadamard is said to have opined, the concrete is the abstract made familiar by time.

  2. Thus using what Fowler (1979) calls “ratio numbers”.

  3. While the terms generalisation and abstraction are often used as synonyms of sorts, our characterization of the abstract as attending to relations clearly distinguishes these two types of activity.

References

  • Bateson, G. (1972). Steps to an ecology of mind. Chicago: University of Chicago Press, 2000.

    Google Scholar 

  • Bell, C. (1991). Ritual theory, ritual practice. New York: Oxford University Press.

    Google Scholar 

  • Bruner, J. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bruner, J. (1996). The culture of education. Massachusetts: Harvard University Press.

  • Coles, A. (2014). Transitional devices. For the learning of mathematics, 34(2), 24-30.

  • Coles, A. (2017). A relational view of mathematical concepts. In E. deFreitas, N. Sinclair, A. Coles (Eds.) What is a mathematical concept?. Cambridge University Press: Cambridge, pp.205-222.

  • Coles, A., & Brown, L. (2016). Task design for ways of working: making distinctions in teaching and learning mathematics. Journal of Mathematics Teacher Education, 19(2), 149-168. 

  • Coles, A., & Sinclair, N. (2017). Re-thinking place value: from metaphor to metonym. For the Learning of Mathematics, 37(1), 3-8. 

  • Coles, A., & Sinclair, N. (2018). Re-Thinking ‘Normal’ Development in the Early Learning of Number. Journal of Numerical Cognition, 4(1), 136-158. 

  • Coles, A. & Sinclair, N. (2019). Ritualization in early number work. Educational Studies in Mathematics, 101(2), 177-194.

  • Davydov, V. (1990). Types of generalization in instruction: Logical and psychological problems in the structuring of school curricula. Reston, VA: NCTM.

    Google Scholar 

  • de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the mathematics classroom. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Dougherty, B. (2008). Measure up: A quantitative view of early algebra. In Kaput, J. J., Carraher, D. W., & Blanton, M. L. (Eds.), Algebra in the early grades, (pp. 389–412). Mahweh, NJ: Erlbaum.

    Google Scholar 

  • Fowler, D. (1979). Ratio in early Greek mathematics. Bulletin of the American Mathematical Society, 1(6), 807-846.

    Article  Google Scholar 

  • Fuson, K. & Briars, D. (1990). Using a base-ten blocks learning/teaching approach for first and second grade place-value and multi-digit addition and subtraction. Journal for Research in Mathematics Education, 21, 180-206.

    Article  Google Scholar 

  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26, 9-25.

    Article  Google Scholar 

  • Gattegno, C. (1965). Mathematics and imagery. Mathematics Teaching, 33(4), 22-24.

    Google Scholar 

  • Gattegno, C. (1974). The common sense of teaching mathematics. NY: Educational Solutions.

    Google Scholar 

  • Gelman, R., & Meck, E. (1983). Preschoolers’ counting: Principles before skill. Cognition, 13(3), 343–359.

    Article  Google Scholar 

  • Greer, B. (2012). Inversion in mathematical thinking and learning. Educational Studies in Mathematics, 79, 429-438.

  • Hewitt, D. (1999). Arbitrary and necessary: A way of viewing the mathematics curriculum. For the Learning of Mathematics 19(3), 2–9.

    Google Scholar 

  • Rittle-Johnson, B., Schneider, M. & Star, J. (2015). Not a one-way street: Bi-directional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review, 27, pp. 587-597.

  • Jackiw, N. (1991). The Geometer’s Sketchpad [software application]. Emeryville, CA: Key Curriculum Press.

    Google Scholar 

  • Jackiw, N. & Sinclair, N. (2019). TouchTimes [software application for the iPad]. Burnaby, BC: The Tangible Mathematics Project.

    Google Scholar 

  • Leung, A. & Baccaglini-Frank, A. 2017 (Eds.), Digital Technologies in Designing Mathematics Education Tasks (pp. 175-192). New York: Springer.

  • Mason, J. (2002). Researching your own practice: The discipline of noticing. London: RoutledgeFalmer.

    Book  Google Scholar 

  • Mason, J., & Pimm, D. (1984). Generic examples: Seeing the general in the particular. Education Studies in Mathematics, 15(3), 277-289.

    Article  Google Scholar 

  • Maturana, H., & Varela, F. (1987). The tree of knowledge: the biological roots of human understanding. Boston: Shambala.

    Google Scholar 

  • Mix, K., Smith, L., & Barterian, J. (2017). Grounding the symbols for place value: evidence from training and long-term exposure to base-10 models. Journal of Cognition and Development, 18(1), 129-151.

    Article  Google Scholar 

  • Moyer-Packenham, P. S., & Westenskow, A. (2013). Effects of virtual manipulatives on student achievement and mathematics learning. International Journal of Virtual and Personal Learning Environments, 4(3), 35–50.

    Article  Google Scholar 

  • Ng, O., Sinclair, N., & Davis, B. (2018). Drawing off the page: How new 3D technologies provide insight into cognitive and pedagogical assumptions about mathematics. The Mathematical Enthusiast.

    Google Scholar 

  • Piaget, J. (1954). The construction of reality in the child. (M. Cook, trans.). NY: Basic Books.

    Book  Google Scholar 

  • Piaget, J. (2001). Studies in reflecting abstraction. Sussex, England: Psychology Press.

    Google Scholar 

  • Pimm, D. (1995). Symbols and meanings in school mathematics. London: Routledge.

  • Sarama, J., & Clements, D. H. (2009). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3(3), 145–150.

    Article  Google Scholar 

  • Simon, M., Tzur, R., Heinz, R. & Kinzel, M. (2004). Explicating a mechanism for conceptual learning: Elaborating the construct of concrete abstraction. Journal for Research in Mathematics Education, 35(5), 305-329.

    Article  Google Scholar 

  • Sinclair, N. & Zazkis, R. (2017). Everybody counts: Designing tasks for TouchCounts. In A. Leung & A. Baccaglini-Frank (Eds.), Digital Technologies in Designing Mathematics Education Tasks (pp. 175-192). New York: Springer.

    Chapter  Google Scholar 

  • Sowell, E. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20(5), 495-505.

    Article  Google Scholar 

  • Suh, J., & Moyer, P. S. (2007). Developing students’ representational fluency using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26(2), 155–173.

    Google Scholar 

  • Thompson, E. & Stapleton, M. (2009). Making sense of sense-making: reflections on enactive and extended mind theories. Topoi,28(1), 23–30.

  • Uttal, D., Scudder, K., & DeLoache, J. (1997). Manipulatives as Symbols: A new perspective in the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18, 37-54.

  • Varela, F., Thompson, E., & Rosch, E. (1991). The embodied mind: cognitive science and human experience. Massachusetts: The MIT Press.

    Book  Google Scholar 

  • Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Watson, A., & Ohtani, M. (2015). Task design in mathematics education. New York: Springer.

    Book  Google Scholar 

  • Wilensky, U. (1991). Abstract meditations on the concrete and concrete implications for mathematics education. In I. Harel & S. Papert (Eds.), Constructionism (pp. 193-204). Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Sinclair.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coles, A., Sinclair, N. Re-thinking ‘Concrete to Abstract’ in Mathematics Education: Towards the Use of Symbolically Structured Environments. Can. J. Sci. Math. Techn. Educ. 19, 465–480 (2019). https://doi.org/10.1007/s42330-019-00068-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42330-019-00068-4

Keywords

Navigation