Skip to main content

Advertisement

Log in

Mechanism, Formation and Transport of Polycyclic Aromatic Hydrocarbons (PAHs) in Fruits, Vegetables and Fresh Fish Species in Africa: A Systematic Review of its Health Risk

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Polycyclic Aromatic hydrocarbons (PAHs) are ubiquitous hydrocarbon compounds consisting of more than two benzene rings. Petrogenic, pyrogenic, and biological processes are frequently reported sources of PAHs in the environment. In order to achieve the goal of reviewing the level of PAHs in fruits, vegetables, and fish species, as well as their health implications for humans in Africa, we vigorously searched through various databases, including Scopus, Science Direct, Google Scholar, and PubMed, and identified, collated, and summarized 41 articles published in these subject areas. PAH pollution have been found to possess high levels of toxicity, mutagenicity, carcinogenicity, teratogenicity, and immunotoxicity towards different organisms. Thus, this review succinctly outlined the formation process, distribution, mechanisms of exposure, and health effects of PAHs on human beings. The highest PAHs obtained in Africa in these samples were 510,000 μg/kg, 36,290 μg/kg and 19,003 μg/kg for fish, Pumkin leaf vegetable, and papaya fruit samples, respectively. Health risk assessment reports extracted from the numerous investigations done revealed low to extremely high levels of risks associated with their consumption by children and adults. To enhance public health, it is crucial to minimize the intake of dietary PAH and adopt practical and efficient risk management measures to decrease PAH levels in food. This review was done in an attempt to contribute to achieving good health and a sustainable environment as outlined by the Sustainable Development Goal (SDG). The investigation revealed an urgent need for the regulation of PAHs in Africa and recommended further research on fruits and vegetables from experts from different countries in Africa.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the associated data are within the manuscript.

References

  1. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123. https://doi.org/10.1016/j.ejpe.2015.03.0111110-0621

    Article  Google Scholar 

  2. Abugu HO, Alum OL, Ihedioha NJ, Ezugwu AL, Ucheana IA, Ali I, Eze SI (2023) Sequestration of Pb2+ from aqueous solution using bio-based-alkaline modified sorbent from waste Irvingia gabonensis seed husk. Water Pract Technol. https://doi.org/10.2166/wpt.2023.170

    Article  Google Scholar 

  3. Abugu HO, Ezugwu AL, Ihedioha JN (2022) Assessment of Polycyclic aromatic hydrocarbon contamination of fruits, leaves, and soil within automobile repair workshops in Nsukka Metropolis. Polycycl Aromat Compd. https://doi.org/10.1080/10406638.2022.2149567

    Article  Google Scholar 

  4. Abugu HO, Eze SI, Ezugwu AL, Ali IJ, Ihedioha NJ (2023) Chemical pretreatment of Lagenaria breviflora seeds used as biosorbents for the removal of aqueous-bound Ni2+. Water Pract Technol. https://doi.org/10.2166/wpt.2023.192

    Article  Google Scholar 

  5. Acaye O, George WN, Jolocam M, Justus K, Margaret M (2013) Polycyclic aromatic hydrocarbons in smoked Lates niloticus from selected markets, Gulu District, Uganda. Afr J Pure Appl Chem 7(4):164–172. https://doi.org/10.5897/ajpac2013.0492

    Article  Google Scholar 

  6. Adeniji AO, Okoh OO, Okoh AI (2019) Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa and Their Health Risk Assessment. Arch Environ Contam Toxicol 76(4):657–669. https://doi.org/10.1007/s00244-019-00617-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adetunde OT, Mills GA, Oluseyi TO, Oyeyiola AO, Olayinka KO, Alo BI (2018) Polycyclic aromatic hydrocarbon in vegetables grown on contaminated soils in a sub-saharan tropical environment – Lagos, Nigeria. Polycycl Aromat Compd 40(4):979–989. https://doi.org/10.1080/10406638.2018.1517807

    Article  CAS  Google Scholar 

  8. Ahrens MJ, Depree CV (2010) A source mixing model to apportion PAHs from coal tar and asphalt binders in street pavements and urban aquatic sediments. Chemosphere 81(11):1526–1535. https://doi.org/10.1016/j.chemosphere.2010.08.030

    Article  CAS  PubMed  Google Scholar 

  9. Akan JC, Chellube ZM, Mohammed AI, Ogugbuaja VO, Abdulrahman FI (2018) Polycyclic aromatic hydrocarbon levels and risk assessment in water, sediment and fish samples from Alau Dam, Borno State, Nigeria. J Environ Sci Technol 11(3):139–146. https://doi.org/10.3923/jest.2018.139.146

    Article  CAS  Google Scholar 

  10. Albanese S, Fontaine B, Chen W, Lima A, Cannatelli C, Piccolo A, De Vivo B (2015) Polycyclic aromatic hydrocarbons in the soils of a densely populated region and associated human health risks: The Campania Plain (Southern Italy) case study. Environ Geochem Health 37(1):1–20. https://doi.org/10.1007/s10653-014-9626-3

    Article  CAS  PubMed  Google Scholar 

  11. Alegbeleye OO, Opeolu BO, Jackson VA (2017) Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manage 60(4):758–783. https://doi.org/10.1007/s00267-017-0896-2

    Article  PubMed  Google Scholar 

  12. Aliyu TU, Abugu HO, Okoye COB (2021) Environmental impact and human health risk assessment of polycyclic aromatic hydrocarbon (Pahs) in raw milk from free-ranging cattles in Northwest Nigeria. J Environ Health Sci Eng 19(2):1523–1534. https://doi.org/10.1007/s40201-021-00708-8

    Article  CAS  Google Scholar 

  13. Aralu CC, Anthony P, Onyeka Abugu H, Chukwuemeka Eze V (2022) Toxicity and distribution of polycyclic aromatic hydrocarbons in leachates from an unlined dumpsite in Nnewi, Nigeria. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2140415

    Article  Google Scholar 

  14. Aralu CC, Okoye PAC, Abugu HO, Eboagu NC, Eze VC (2023) Characterization, sources, and risk assessment of PAHs in borehole water from the vicinity of an unlined dumpsite in Awka, Nigeria. Sci Rep 13:9688. https://doi.org/10.1038/s41598-023-36691-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aralu CC, Okoye PAC, Abugu HO, Eze VC (2022) Toxicity and distribution of polycyclic aromatic hydrocarbons in leachates from an unlined dumpsite in Nnewi, Nigeria. Int J Environ Analy Chem. https://doi.org/10.1080/03067319.2022.2140415

    Article  Google Scholar 

  16. Armstrong BG, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112(9):970–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Araromi A, Ayodele O, Azeez M, Olanipekun E (2020) Assessment of trace organics in tomatoes from selected markets in Ado-Ekiti, Nigeria. J Mater Environ Sci 12:2084–2094

    Google Scholar 

  18. Arey J, Atkinson R (2003) Photochemical reactions of PAHs in the atmosphere. In: Douben PET (ed) PAHs: an ecotoxicological perspective. Wiley, West Sussex, UK, pp 47–63

    Chapter  Google Scholar 

  19. Asagbra M, Adebayo A, Anumudu C, Ugwumba O, Ugwumba A (2015) Polycyclic aromatic hydrocarbons in water, sediment and fish from the Warri River at Ubeji, Niger Delta, Nigeria. Afr J Aquat Sci 40(2):193–199. https://doi.org/10.2989/16085914.2015.1035223

    Article  CAS  Google Scholar 

  20. ATSDR (Agency for Toxic Substances and Disease Registry) (1995) Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Available at: https://www.atsdr.cdc.gov/ToxProfiles/tp69.pdf. Accessed 22 Feb 2023

  21. Baali A, Kammann U, Hanel R, El Qoraychy I, Yahyaoui A (2016) Bile metabolites of polycyclic aromatic hydrocarbons (PAHs) in three species of fish from Morocco. Environ Sci Europe. https://doi.org/10.1186/s12302-016-0093-6

    Article  Google Scholar 

  22. Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fate and behavior. Water Air Soil Pollut 60:79–300

    Article  Google Scholar 

  23. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45(2–3):106–114. https://doi.org/10.1002/em.20095

    Article  CAS  PubMed  Google Scholar 

  24. Bandowe BAM, Bigalke M, Boamah L, Nyarko E, Saalia FK, Wilcke W (2014) Polycyclic aromatic compounds (PAHs and oxygenated PAHs) and trace metals in fish species from Ghana (West Africa): bioaccumulation and health risk assessment. Environ Int 65:135–146. https://doi.org/10.1016/j.envint.2013.12.018

    Article  CAS  PubMed  Google Scholar 

  25. Bansal V, Kim KH (2015) Review of PAH contamination in food products and their health hazards. Environ Int 84:26–38. https://doi.org/10.1016/j.envint.2015.06.016

    Article  CAS  PubMed  Google Scholar 

  26. Benson NU, Anake AE, Adedapo WU, Fred-Ahmadu OH, Eke KP (2017) Polycyclic aromatic hydrocarbons in imported Sardinops sagax: levels and health risk assessments through dietary exposure in Nigeria. J Food Compos Anal 57:109–116

    Article  CAS  Google Scholar 

  27. Boada LD, Henríquez-Hernández LA, Navarro P, Zumbado M, Almeida-González M, Camacho M, Álvarez-León EE, Valencia-Santana JA, Luzardo OP (2014) Exposure to polycyclic aromatic hydrocarbons (PAHs) and bladder cancer: evaluation from a gene-environment perspective in a hospital-based case-control study in the Canary Islands (Spain). Int J Occup Environ Health 21(1):23–30. https://doi.org/10.1179/2049396714y.0000000085

    Article  PubMed  Google Scholar 

  28. Bolden AL, Rochester JR, Schultz K, Kwiatkowski CF (2017) Polycyclic aromatic hydrocarbons and female reproductive health: a scoping review. Reprod Toxicol 73:61–74. https://doi.org/10.1016/j.reprotox.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  29. Brandt M, Einhenkel-Arle D (2016) Polycyclic aromatic hydrocarbons: harmful to the environment! Toxic! Inevitable? German Environment Agency. 1–26

  30. Byambaa B, Yang L, Matsuki A (2019) Sources and characteristics of polycyclic aromatic hydrocarbons in ambient total suspended particles in Ulaanbaatar City, Mongolia. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16030442

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cao C, Jia Z, Shao M, Li R, Sun Q, Liu D (2021) Prenatal exposure to polycyclic aromatic hydrocarbons could increase the risk of low birth weight by affecting the DNA methylation states in a Chinese cohort. Reprod Biol 21(4):100574. https://doi.org/10.1016/j.repbio.2021.100574

    Article  CAS  PubMed  Google Scholar 

  32. Chukwumalume R-M (2016) Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticide residues in selected marine fish species along the coast of South Africa. PhD Thesis. Stellenbosch University. 41

  33. Dosunmu MI, Oyo-Ita IO, Oyo-Ita OE (2016) Risk assessment of human exposure to polycyclic aromatic hydrocarbons via shrimp (Macrobrachium felicinum) consumption along the Imo River catchments, SE Nigeria. Environ Geochem Health 38(6):1333–1345. https://doi.org/10.1007/s10653-016-9799-z

    Article  CAS  PubMed  Google Scholar 

  34. Edokpayi JN, Odiyo JO, Popoola OE (2016) Determination and distribution of polycyclic aromatic hydrocarbons in rivers, sediments and wastewater effluents in Vhembe District, South Africa. Int J Environl Res Public Health 13(4):387

    Article  Google Scholar 

  35. Eddy NO, Garg R, Ukpe RA, Akpanudo NW, Abugu HO, Garg R, Anjum A, Anand B (2024) Ethical and environmental implications associated with the application of nanotechnology. Smart and sustainable applications of nanocomposites. IGI Global Publisher, Hershey, pp 274–299

    Chapter  Google Scholar 

  36. Effiong AI, Bassey F, Chukwujindu I, Ekpa DO, Williams AS, Oguntunde F (2016) Polycyclic aromatic hydrocarbons in three commercially available fish species from the Bonny and Cross River estuaries in the Niger Delta, Nigeria. Environ Moni Assess 188(9):508

    Article  Google Scholar 

  37. EFSA (2008) Polycyclic aromatic hydrocarbons in food 1 scientific opinion of the panel on contaminants in the food chain. Eur Food Saf Auth J 724:1–114

    Google Scholar 

  38. Ekere NR, Yakubu NM, Oparanozie T, Ihedioha JN (2019) Levels and risk assessment of polycyclic aromatic hydrocarbons in water and fish of Rivers Niger and Benue confluence Lokoja, Nigeria. J Environ Health Sci Eng 17(1):383–392. https://doi.org/10.1007/s40201-019-00356-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elehinafe FB, Okedere OB, Adesanmi AJ, Jimoh EM (2022) Assessment of indoor levels of carbon monoxide emission from smoldering mosquito coils used in Nigeria. Environ Health Insights 16:117863022210910. https://doi.org/10.1177/11786302221091031

    Article  Google Scholar 

  40. Elehinafe F, Okedere O, Ayeni A, Ajewole T (2022) Hazardous organic pollutants from open burning of municipal wastes in Southwest Nigeria. J Ecol Eng 23(9):288–296. https://doi.org/10.12911/22998993/150647

    Article  Google Scholar 

  41. El-Kady AA, Wade TL, Sweet S (2018) Assessment and ecological indicators of total and polycyclic aromatic hydrocarbons in the aquatic environment of lake Manzala, Egypt. J Environ Sci Health Part A 53(9):854–865. https://doi.org/10.1080/10934529.2018.1455376

    Article  CAS  Google Scholar 

  42. Emoyoma UO, Ezejiofor AN, Frazzoli C, Bocca B, Ekhator OC, Onyena AP, Udom GJ, Orisakwe OE (2023) Polycyclic aromatic hydrocarbons in fish (fresh and dried) and public health in Nigeria: a systematic review. Int J Environ Health Res. https://doi.org/10.1080/09603123.2023.2230915

    Article  PubMed  Google Scholar 

  43. Ephraim-Emmanuel BC, Ordinioha B (2021) Exposure and public health effects of polycyclic aromatic hydrocarbon compounds in Sub-Saharan Africa: a systematic review. Int J Toxicol 40(3):250–269. https://doi.org/10.1177/10915818211002487

    Article  PubMed  Google Scholar 

  44. Erhabor D, Edjere O, Ejeomo C (2018) Effects of heat sources on the levels of polycyclic aromatic hydrocarbon in selected fish samples from Ogidingbe (Escravos Estuaries). Afr J Biotech 17(51):1403–1411. https://doi.org/10.5897/ajb2016.15556

    Article  CAS  Google Scholar 

  45. Essumang DK, Antwi-Adjei R, Adjei J, Akwansah EG, Dodoo DK (2018) Seasonal variation of polycyclic aromatic hydrocarbon (PAH) contamination in Crassostrea tulipa (oysters) and sediments in three Ghanaian coastal ecosystems. Res J Environ Sci 12:63–72. https://doi.org/10.3923/rjes.2018.63.72s

    Article  Google Scholar 

  46. Eze SI, Abugu HO, Ekowo LC (2021) Thermal and chemical pretreatment of Cassia sieberiana seed as biosorbent for Pb2+ removal from aqueous solution. Desalin Water Treat 226:223–241. https://doi.org/10.5004/dwt.2021.27234

    Article  CAS  Google Scholar 

  47. Eze SI, Abugu HO, Odewole OA, Ukwueze NN, Alum LO (2022) Thermal and chemical pretreatment of Terminalia mantaly seed husk biosorbent to enhance the adsorption capacity for Pb2+. Sci Afr 15:e01123. https://doi.org/10.1016/j.sciaf.2022.e01123

    Article  CAS  Google Scholar 

  48. Ezugwu AL, Abugu HO, Ucheana IA, Eze SI, Egbueri JC, Aigbodion VS, Akpomie KG (2023) Sequestration of lead ion in aqueous solution onto chemically pretreated Pycnanthus angolensis Seed husk: implications for wastewater treatment. Sustainability 15(21):15446–15446. https://doi.org/10.3390/su152115446

    Article  CAS  Google Scholar 

  49. Fernandes A, Holland J, Petch R, Miller M, Carlisle S, Stewart J (2019) Survey for polycyclic aromatic hydrocarbons (PAHs) in cereals, cereal products, vegetables, vegetable products and traditionally-smoked foods. FD 10/04. Food Environ Res Agency 10(04):1–45

    CAS  Google Scholar 

  50. Genetic Alliance and District of Columbia Department of Health (2010) Understanding genetics: a district of Columbia guide for patients and health professionals. PubMed. Washington (DC): Genetic Alliance. Available at: https://pubmed.ncbi.nlm.nih.gov/23586106/. Accessed 23 Feb 2023

  51. German Federal Environment Agency (GFEA) (2012) Polycyclic aromatic hydrocarbons: Harmful to the environment! Toxic! Inevitable? https://www.umweltbundesamt.de. Accessed 23 Feb 2023

  52. Ghodrati M, Mousavi-Kamazani M, Zinatloo-Ajabshir S (2020) Zn3V3O8 nanostructures: facile hydrothermal/solvothermal synthesis, characterization, and electrochemical hydrogen storage. Ceram Int 46(18):28894–28902. https://doi.org/10.1016/j.ceramint.2020.08.057

    Article  CAS  Google Scholar 

  53. Gupte A, Tripathi A, Patel H, Rudakiya D, Gupte S (2016) Bioremediation of polycyclic aromatic hydrocarbon (PAHs): a perspective. Open Biotechnol J 10:363–378. https://doi.org/10.2174/1874070701610010363

    Article  CAS  Google Scholar 

  54. Hainaut P (2001) Patterns of p53 G->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis 22(3):367–374. https://doi.org/10.1093/carcin/22.3.367

    Article  CAS  PubMed  Google Scholar 

  55. Hall JG (2016) Introduction. In: Stevenson R, Hall JG, Everman DB, Solomon BD (eds) Human malformations and associated anomalies, 3rd edn. Oxford University Press, NY

    Google Scholar 

  56. Hamidi EN, Hajeb P, Selamat J, Abdull Razis AF (2016) Polycyclic aromatic hydrocarbons (PAHs) and their bioaccessibility in meat: a tool for assessing human cancer risk. Asian Pacific J Cancer Prev: APJCP 17(1):15–23. https://doi.org/10.7314/apjcp.2016.17.1.15

    Article  Google Scholar 

  57. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1):1–15

    Article  CAS  PubMed  Google Scholar 

  58. Honma M (2020) An assessment of mutagenicity of chemical substances by (quantitative) structure– activity relationship. Genes Environ. https://doi.org/10.1186/s41021-020-00163-1

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hosseinzadeh G, Sajjadi SM, Mostafa L, Yousefi A, Vafaie RH, Zinatloo-Ajabshir S (2023) Synthesis of novel direct Z-scheme heterojunction photocatalyst from WO3 nanoplates and SrTiO3 nanoparticles with abundant oxygen vacancies. Surf Interfaces 42:103349–103349. https://doi.org/10.1016/j.surfin.2023.103349

    Article  CAS  Google Scholar 

  60. Hsu GW, Huang X, Luneva NP, Geacintov NE, Beese LS (2005) Structure of a high fidelity DNA polymerase bound to a benzo(a)pyrene adduct that blocks replication. J Biol Chem 280(5):3764–3770

    Article  CAS  PubMed  Google Scholar 

  61. IARC (International Agency for Research on Cancer) (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. Monogr Eval Carcinog Risks Hum 92:765–771

    Google Scholar 

  62. Ideriah TJK, Osaisai CB, Etukudoh CJ (2019) Evaluation of proximate heavy metals and polycyclic aromatic hydrocarbons concentrations in selected food stuffs in open markets in Port Harcourt, Nigeria. IOSR J 13(8):44–54

    CAS  Google Scholar 

  63. Igwe OU, Ogbu UO, Egwu AC (2022) Polycyclic aromatic hydrocarbons (PAHs) in telfairia occidentalis from two markets in Ohafia Area, Abia State, Nigeria. Chem Search J 13(1):106–110

    Google Scholar 

  64. Igwe OU, Nwosu EN, Egwu AC (2022) Polycyclic aromatic hydrocarbons (Pahs) in the leaves of piper guineense from two markets within Umuahia Metropolis. J Chem Soc Nigeria. https://doi.org/10.46602/jcsn.v67i3.756

    Article  Google Scholar 

  65. Ijere DN, Okechukwu RI, Okereke JN, Mgbemena IC, Ogidi OI (2022) Bioaccumulation of PAHs and heavy metals by waterleaf and fluted pumpkin harvested in four communities around hairdressing salon facilities in Abia State, Nigeria. J Environ Sci Public Health 6:281–298. https://doi.org/10.26502/jesph.96120174

    Article  Google Scholar 

  66. Ikue G, Monanu M, Onuah C (2016) Bioaccumulation of polycyclic aromatic hydrocarbons in tissues (Gills and Muscles) of (Catfish) Chrysichthys nigrodidatatus from crude oil polluted water of ogoniland, River State, Nigeria. J Appl Life Sci Int 6(3):1–6. https://doi.org/10.9734/jalsi/2016/27248

    Article  Google Scholar 

  67. Inam E, Ibanga F, Essien J (2016) Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria. Environ Monit Assess. https://doi.org/10.1007/s10661-016-5695-3

    Article  PubMed  Google Scholar 

  68. IPCS (International Programme on Chemical Safety) (1998) Selected nonheterocyclic polycyclic aromatic hydrocarbons. Environmental Health Criteria 202. Geneva: WHO

  69. Iwekumo A, Oghenekohwiroro E, Godwin A, Solomon O, Uwem B (2020) Source predictions of polycyclic aromatic hydrocarbon (PAHs) concentration in water, sediment, and biota (FISHES) from Ethiope River, Delta State, Southern Nigeria. J Ecol Nat Environ 12(4):140–149. https://doi.org/10.5897/jene2020.0832

    Article  CAS  Google Scholar 

  70. Kamaljit B, Gurpal ST, Tait C, Lena M (2010) Polycyclic aromatic hydrocarbons in urban soils of different land uses in Miami, Florida. Soil Sediment Contam 19:231–243

    Article  Google Scholar 

  71. Kılıç Ö, Dinçer EA, Erbaş M (2017) Gıdalarda polisiklik aromatİk hidrokarbon bileşiklerinin bulunuşu ve sağlik üzerine etkileri. Gıda 42:127–135

    Google Scholar 

  72. Kim K-H, Jahan SA, Kabir E, Brown RJC (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80. https://doi.org/10.1016/j.envint.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  73. Kouakou R, Kouassi AM, Kouassi Kwa-Koffi E, Gnonsoro UP, Trokourey A (2015) Distribution of polycyclic aromatic hydrocarbons (PAHs) in a tropical coastal lagoon (Grand-Lahou lagoon, Côte d’Ivoire). Int J Biol Chem Sci 9(2):1120–1129. https://doi.org/10.4314/ijbcs.v9i2.47

    Article  CAS  Google Scholar 

  74. Kumar SN, Verma P, Bastia B, Jain AK (2014) Health risk assessment of polycyclic aromatic hydrocarbons: a review. J Pathol Toxicol 1:16–30

    Google Scholar 

  75. Kuo C-Y, Chien P-S, Kuo W-C, Wei C-T, Rau J-Y (2012) Comparison of polycyclic aromatic hydrocarbon emissions on gasoline- and diesel-dominated routes. Environ Monit Assess 185(7):5749–5761. https://doi.org/10.1007/s10661-012-2981-6

    Article  CAS  PubMed  Google Scholar 

  76. Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968. https://doi.org/10.1016/j.chemosphere.2016.10.115

    Article  CAS  PubMed  Google Scholar 

  77. Miyata A, Uchida N, Nakajima K, Yaguchi S (2001) Clinical and experimental observation of glistening in acrylic intraocular lenses. Jpn J Ophthalmol 45(6):564–569. https://doi.org/10.1016/s0021-5155(01)00429-4

    Article  CAS  PubMed  Google Scholar 

  78. Mohammed S, Obiri S, Ansa-Asare OD, Dartey G, Kuddy R, Appiah S (2019) Assessment of concentration of polycyclic aromatic hydrocarbons (PAHs) in vegetables from farms in Accra, Ghana. Environ Monit Assess. https://doi.org/10.1007/s10661-019-7538-5

    Article  PubMed  Google Scholar 

  79. Mohammed Z, Akan JC, Bukar LI, Idi AM (2017) Cancer and noncancer risk associated with PAHs exposure from consumption of fish from Komadugu River Basin, Yobe State, Nigeria. J Aquat Pollut Toxicol 1(3):17

    Google Scholar 

  80. Mojiri A, Zhou JL, Ohashi A, Ozaki N, Kindaichi T (2019) Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci Total Environ 2019:133971. https://doi.org/10.1016/j.scitotenv.2019.133971n

    Article  Google Scholar 

  81. Nasher E, Heng LY, Zakaria Z, Surif S (2013) Assessing the ecological risk of polycyclic aromatic hydrocarbons in sediments at Langkawi Island, Malaysia. Sci World J 2013:1–13. https://doi.org/10.1155/2013/858309

    Article  CAS  Google Scholar 

  82. Net S, Henry F, Rabodonirina S, Diop M, Merhaby D, Mahfouz C, Amara R, Ouddane B (2015) Accumulation of PAHs, Me-PAHs, PCBs and total mercury in sediments and marine species in coastal areas of Dakar, Senegal: contamination level and impact. Int J Environ Res 9(2):419–432

    CAS  Google Scholar 

  83. Nkansah MA (2012) Environmental remediation: removal of polycyclic aromatic hydrocarbons. PhD Thesis. University of Bergen, p 2

  84. Nubi AO, Popoola SO, Dada OA, Oyatola OO, Unyimadu JP, Adekunbi OF, Salami AM (2022) Spatial distributions and risk assessment of heavy metals and PAH in the southwestern Nigeria coastal water and estuaries, Gulf of Guinea. J Afr Earth Sc 188:104472. https://doi.org/10.1016/j.jafrearsci.2022.104472

    Article  CAS  Google Scholar 

  85. Nwaichi EO, Ntorgbo SA (2016) Assessment of PAHs levels in some fish and seafood from different coastal waters in the Niger Delta. Toxicol Rep 3:167–172. https://doi.org/10.1016/j.toxrep.2016.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nwaichi E, Agbam P, Iwu P (2017) Polycyclic aromatic hydrocarbons (PAHs) and some trace metals in yam, cassava, orange and papaya from two oil and gas flaring impacted communities in Southern Nigeria. J Appl Sci Environ Manag 21(6):1057. https://doi.org/10.4314/jasem.v21i6.10

    Article  CAS  Google Scholar 

  87. Nworah FN, Nkwocha CC, Nwachukwu JN, Ezeako EC (2019) Comparative analysis of the polycyclic aromatic hydrocarbon (PAH) content and proximate composition of unripe Musa paradisiaca (plantain) fruit exposed to varying methods of roasting. J Environ Health Sci Eng 17(1):105–113. https://doi.org/10.1007/s40201-018-00331-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ofori SA, Cobbina SJ, Imoro AZ, Doke DA, Gaiser T (2021) Polycyclic aromatic hydrocarbon (PAH) pollution and its associated human health risks in the Niger Delta Region of Nigeria: a systematic review. Environ Process 8(2):455–482. https://doi.org/10.1007/s40710-021-00507-1

    Article  CAS  Google Scholar 

  89. Ogbonna DN, Origbe ME (2021) Distribution of polycyclic aromatic hydrocarbons in surface water and fishes in Bodo/Bonny River Nigeria. IJECC 11(6):90–99. https://doi.org/10.9734/ijecc/2021/v11i630425

    Article  CAS  Google Scholar 

  90. Okaba FA, Daka ER, Tulonimi JK (2020) Evaluation of polycyclic aromatic hydrocarbons and toxic elements in some vegetables cultivated along roadsides in Port Harcourt and Environs. J Environ Sci Toxicol Food Technol 14:14–31

    CAS  Google Scholar 

  91. Okafor VN, Uche UB, Abailim RC (2020) Levels of polycyclic aromatic hydrocarbons (PAHs) in beers: consumption and public health concerns. Chem Sci Int J 47–59. https://doi.org/10.9734/csji/2020/v29i130157

  92. Okereke CJ, Essien EB, Wegwu MO (2016) Distribution and risk assessment of polycyclic aromatic hydrocarbons in vegetables and agricultural soils from two communities in Rivers State, Nigeria. J Res Environ Sci Toxicol 5(2):018–025

    Google Scholar 

  93. Okpashi VE, Ogugua VN, Ubani SC, Ujah II, Ozioko JN (2017) Estimation of residual polycyclic aromatic hydrocarbons concentration in fish species: Implication in reciprocal corollary. Cogent Environ Sci. https://doi.org/10.1080/23311843.2017.1303979

    Article  Google Scholar 

  94. Olayinka OO, Adewusi AA, Olujimi OO, Aladesida AA (2019) Polycyclic aromatic hydrocarbons in sediment and health risk of fish, crab and shrimp around Atlas Cove, Nigeria. J Health Pollut. https://doi.org/10.5696/2156-9614-9.24.191204

    Article  PubMed  PubMed Central  Google Scholar 

  95. Oloyede M, Shittu L, Ajibola YF, Okechukwu IP (2023) Assessment of mutagenicity and carcinogenicity risks and source apportionment of polycyclic aromatic hydrocarbons of monitored black carbon (Soot) in air and swimming pool water in Port Harcourt. Res Sq. https://doi.org/10.21203/rs.3.rs-2880375/v1

    Article  Google Scholar 

  96. Onuoha SC, Karibo O (2018) Assessment of polycyclic aromatic hydrocarbon concentration in some vegetables in rivers state, Nigeria. Int J Curr Res 10(09):73739–73742. https://doi.org/10.24941/ijcr.32085.09.2018

    Article  CAS  Google Scholar 

  97. Omar WA, Mahmoud HM (2016) Risk assessment of polycyclic aromatic hydrocarbons (PAHs) in River Nile up- and downstream of a densely populated area. J Environ Sci Health Part A 52(2):166–173. https://doi.org/10.1080/10934529.2016.1240488

    Article  CAS  Google Scholar 

  98. Onanuga O, Onanuga A (2014) Economics of the environment and infant mortality in sub-Saharan Africa. Afr J Sci Res 12(1):689–703

    Google Scholar 

  99. Onyedikachi UB, Belonwu CD, Wegwu MO (2019) The determination of polycyclic aromatic hydrocarbons in some foods from industrialized areas in South Eastern Nigeria: human health risk impact. Ovidius Univ Ann Chem 30(1):37–43. https://doi.org/10.2478/auoc-2019-0007

    Article  CAS  Google Scholar 

  100. Onyegeme-Okerenta BM, West OL, Chuku LC (2022) Concentration, dietary exposure and human health risk assessment of total petroleum and polycyclic aromatic hydrocarbons in seafood from coastal communities in Rivers State, Nigeria. Sci Afr 16:e01186. https://doi.org/10.1016/j.sciaf.2022.e01186

    Article  CAS  Google Scholar 

  101. Ouro-Sama K, Tanouayi G, Solitoke HD, Barsan N, Mosnegutu E, Badassan TE-E, Agbere S, Adje K, Nedeff V, Gnandi K (2023) Polycyclic aromatic hydrocarbons (PAHs) contamination in Chrysichthys nigrodigitatus Lacépède, 1803 from Lake Togo-Lagoon of Aného, Togo: possible human health risk suitable to their consumption. Int J Environ Res Public Health 20(3):1666. https://doi.org/10.3390/ijerph20031666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Oyibo JN, Wegwu MO, Uwakwe AA, Osuoha JO (2017) Analysis of total petroleum hydrocarbons, polycyclic aromatic hydrocarbons and risk assessment of heavy metals in some selected finfishes at Forcados Terminal, Delta State, Nigeria. Environ Nanotechnol Monitor Manag 9:128–135. https://doi.org/10.1016/j.enmm.2017.11.002

    Article  Google Scholar 

  103. Padula A, Noth EM, Katharine Hammond S, Lurmann F, Yang W, Tager IB, Shaw GM (2014) Exposure to airborne polycyclic aromatic hydrocarbons during pregnancy and risk of preterm birth. Environ Res 135:221–226. https://doi.org/10.1016/j.envres.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D (2020) Polycyclic aromatic hydrocarbons: sources, toxicity, and remediation approaches. Front Microbiol 11:562813. https://doi.org/10.3389/fmicb.2020.562813

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rengarajana T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5(3):182–189

    Article  Google Scholar 

  106. Rimayi C, Chimuka L (2019) Organ-specific bioaccumulation of PCBs and PAHs in African sharptooth catfish (Clarias gariepinus) and common carp (Cyprinus carpio) from the Hartbeespoort Dam, South Africa. Environ Monit Assess 191:700. https://doi.org/10.1007/s10661-019-7912-3

    Article  CAS  PubMed  Google Scholar 

  107. Rufina-Mary CC (2016) Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticide residues in selected marine fish species along the coast of South Africa (Doctoral dissertation, Stellenbosch: Stellenbosch University)

  108. Rumney HS, Potter K, Mellor PK, Brant J, Whomersley P, Shaw S, Barry J, Kirby MF, Law RJ (2014) Polycyclic aromatic hydrocarbons in fish from St Helena, South Atlantic, in relation to an historic wreck. Mar Pollut Bull 89(1–2):451–454. https://doi.org/10.1016/j.marpolbul.2014.09.047

    Article  CAS  PubMed  Google Scholar 

  109. Sadeghdoust F, Ghanavati N, Nazarpour A, Babaenejad T, Watts MJ (2020) Hazard, ecological, and human health risk assessment of heavy metals in street Dust in Dezful, Iran. Arab J Geosci 13(17):1–14

    Article  Google Scholar 

  110. Şahin T, Dalğa S, Ölmez M (2022) Polycyclic aromatic hydrocarbons (PAHs) and their importance in animal nutrition. Anim Husb. https://doi.org/10.5772/intechopen.101816

    Article  Google Scholar 

  111. Sardar K, Qing C (2012) Human health risk due to consumption of vegetables contaminated with carcinogenic polycyclic aromatic hydrocarbons. J Soils Sediments 12(2):178–184

    Article  Google Scholar 

  112. Seo JS, Keum YS, Harada RM, Li PX (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAH-contaminated soil in Hilo, Hawaii. J Sci Food Agric 55:5383–5389

    Article  CAS  Google Scholar 

  113. Seopela MP, McCrindle R, Combrinck S, Regnier T (2016) Hazard assessment of polycyclic aromatic hydrocarbons in water and sediment in the vicinity of coalmines. J Soils Sediments 16(12):2740–2752. https://doi.org/10.1007/s11368-016-1499-x

    Article  CAS  Google Scholar 

  114. Smith TL, Merry ST, Harris DL, Joe Ford J, Ike J, Archibong AE, Ramesh A (2007) Species-specific testicular and hepatic microsomal metabolism of benzo(a)pyrene, an ubiquitous toxicant and endocrine disruptor. Toxicol In Vitro 21(4):753–758. https://doi.org/10.1016/j.tiv.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  115. Sogbanmu TO, Osibona AO, Otitoloju AA (2019) Specific polycyclic aromatic hydrocarbons identified as ecological risk factors in the Lagos lagoon, Nigeria. Environ Pollut 255:113295. https://doi.org/10.1016/j.envpol.2019.113295

    Article  CAS  PubMed  Google Scholar 

  116. Sojinu OS, Sonibare OO, Zeng EY (2011) Concentrations of polycyclic aromatic hydrocarbons in soils of a mangrove forest affected by a forest fire. Toxicol Environ Chem 93(3):450–461

    Article  CAS  Google Scholar 

  117. Sun RX, Lin Q, Ke CL, Du FY, Gu YG, Cao K, Xiao JL, Mai BX (2016) Polycyclic aromatic hydrocarbons in surface sediments and marine organisms from the Daya Bay. South China Mar Poll Bull 103(1):325–332

    Article  CAS  Google Scholar 

  118. Taghizadeh SF, Rezaee R, Boskabady MM, Sardoo H, Karimi G (2020) Exploring the carcinogenic and non-carcinogenic risk of chemicals present in vegetable oils. Int J Environ Anal Chem 2020:1–29. https://doi.org/10.1080/03067319.2020.1803848

    Article  CAS  Google Scholar 

  119. Tesi GO, Iniaghe PO, Lari B, Obi-Iyeke G, Ossai JC (2021) Polycyclic aromatic hydrocarbons (PAHs) in leafy vegetables consumed in southern Nigeria: concentration, risk assessment and source apportionment. Environ Monit Assess. https://doi.org/10.1007/s10661-021-09217-5

    Article  PubMed  Google Scholar 

  120. Tongo I, Ogbeide O, Ezemonye L (2017) Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicol Rep 4:55–61. https://doi.org/10.1016/j.toxrep.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  121. US EPA (Environmental Protection Agency) (2008) Polycyclic aromatic hydrocarbons (PAHs) — EPA fact sheet. Washington (DC): National Center for Environmental Assessment, Office of Research and Development 1–3

  122. USEPA (1991) Risk assessment guidance for superfund, volume 1, Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals). OSWER; 1991 [9285.7-01B. EPA/540/R-92/003]

  123. US EPA (2001) Integrated risk information system (IRIS): Benzo[a]pyrene (CAS No. 50-328)

  124. Wang X-T, Miao Y, Zhang Y, Li Y, Wu M, Yu G (2013) Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci Total Environ 447:80–89. https://doi.org/10.1016/j.scitotenv.2012.12.086

    Article  CAS  PubMed  Google Scholar 

  125. Wick AF, Haus NW, Sukkariyah BF, Haering KC, Daniels WL (2011) Remediation of PAH contaminated soils and sediments: a literature review. CSES Department, Internal Research Document, pp 1–102

  126. Yang Q, Chen H, Li B (2015) Polycyclic aromatic hydrocarbons (PAHs)vin indoor dusts of Guizhou, southwest of China: Status, sources andvpotential human health risk. PLoS ONE 10(2):e0118141. https://doi.org/10.1371/journal.pone.0118141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yanyangwu D (2012) Anaerobic biodegradation of PAHs in river sediments under denitrifying conditions-Another choice? Yanyangwu.wordpress.com. Accessed 4 Oct 2023

  128. Yousefi SR, Alshamsi HA, Amiri O, Salavati-Niasari M (2021) Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J Mol Liq 337:116405. https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  129. Yousefi SR, Amiri O, Salavati-Niasari M (2019) Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4 nanostructures and study their photocatalytic activity. Ultrason Sonochem 58:104619. https://doi.org/10.1016/j.ultsonch.2019.104619

    Article  CAS  PubMed  Google Scholar 

  130. Zhao X, Gao J, Zhai L, Yu X, Xiao Y (2023) Recent evidence on polycyclic aromatic hydrocarbon exposure. Healthcare 11(13):1958–1958. https://doi.org/10.3390/healthcare11131958

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang C, Yao FENG, Liu YW, Chang HQ, Li ZJ, Xue JM (2017) Uptake and translocation of organic pollutants in plants: a review. J Integr Agric 16(8):1659–1668

    Article  CAS  Google Scholar 

  132. Zhang Y, Chen X, Zhang Y (2021) Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: from food processing to in vivo metabolic transformation. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.12705

    Article  PubMed  Google Scholar 

  133. Zinatloo-Ajabshir S, Salavati-Niasari M (2019) Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants. Compos B Eng 174:106930. https://doi.org/10.1016/j.compositesb.2019.106930

    Article  CAS  Google Scholar 

  134. Zinatloo-Ajabshir S, Morassaei M, Amiri O, Salavati-Niasari M (2019) Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.11.072

    Article  Google Scholar 

  135. Zinatloo-Ajabshir S, Morassaei MS, Salavati-Niasari M (2019) Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos B Eng 167:643–653. https://doi.org/10.1016/j.compositesb.2019.03.045

    Article  CAS  Google Scholar 

  136. Zinatloo-Ajabshir S, Salavati-Niasari M (2016) Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. J Mol Liq 216:545–551. https://doi.org/10.1016/j.molliq.2016.01.062

    Article  CAS  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ifeanyi Adolphus Ucheana, Michael Ekuru Omeka, Johnson C. Agbasi, and Chiedozie Chukwuemeka Aralu. The first draft of the manuscript was written by Arinze Longinus Ezugwu, Hillary Onyeka Abugu, Johnbosco C. Egbueri while the final draft was done by Arinze Longinus Ezugwu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hillary Onyeka Abugu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

All consent were approved by the authors.

Consent to Publish

All authors gave their consent to publish.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezugwu, A.L., Agbasi, J.C., Egbueri, J.C. et al. Mechanism, Formation and Transport of Polycyclic Aromatic Hydrocarbons (PAHs) in Fruits, Vegetables and Fresh Fish Species in Africa: A Systematic Review of its Health Risk. Chemistry Africa (2024). https://doi.org/10.1007/s42250-024-00926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42250-024-00926-1

Keywords

Navigation