Skip to main content

Advertisement

Log in

Organ-specific bioaccumulation of PCBs and PAHs in African sharptooth catfish (Clarias gariepinus) and common carp (Cyprinus carpio) from the Hartbeespoort Dam, South Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The distribution of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in the muscle, liver, spleen and kidney tissue of two fish species was studied using an optimised diatomaceous earth assisted modified QuEChERS extraction method. Five-year-old free-ranging male African sharptooth catfish (Clarias gariepinus) and 5-year-old male common carp (Cyprinus carpio) sampled from the Hartbeespoort Dam in South Africa were used for method development. Acetonitrile extraction produced more precise recoveries than hexane extraction. Fluorene and naphthalene were the most abundant PAHs detected in the majority of fish tissues analysed. PAH bioaccumulation in 5-year-old carp and 5-year-old catfish was in the order muscle > kidney > liver > spleen and liver > muscle > kidney > spleen, respectively. PCBs were mostly detected in carp spleen and kidney. Two-year-old carp were analysed to determine PCB and PAH bioaccumulation trends. The differences in ∑16PAH concentrations between the four organs tested were all statistically insignificant for the 3 fish tested (p > 0.05). All other organs with the exception of 5-year-old carp spleen and 5-year-old carp kidney recorded total 31 PCB concentrations (∑31PCB) < 25 ng g−1. Only 5-year-old carp spleen (∑31PCB of 592 ng g−1) and 5-year-old carp kidney (∑31PCB of 561 ng g−1) had significant differences (p < 0.05) from the spleen and kidney in 5-year-old catfish and 2-year-old carp. Whilst the carp and catfish sampled can be considered low PCB risk foods, 5-year-old carp muscle can be considered to be a high PAH risk food, with a benzo(a)pyrene concentration of 7 μg g−1, based on the EU Commission Regulation 2005/208/EC pertaining to the maximum permissible benzo(a)pyrene level in fresh fish muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amdany, R., Chimuka, L., Cukrowska, E., Kukucka, P., Kohoutek, J., & Vrana, B. (2014). Investigating the temporal trends in PAH, PCB and OCP concentrations in Hartbeespoort dam, South Africa, using semipermeable membrane devices (SPMDs). Water SA, 40(3), 425–436.

    Article  CAS  Google Scholar 

  • Andersson, T., & Forlin, L. (1992). Regulation of the cytochrome system in fish. Aquatic Toxicology, 24(1–2), 1–20.

    Article  CAS  Google Scholar 

  • Baars, A., Bakker, M., Baumann, R., Boon, P., Freijer, J., Hoogenboom, L., Hoogerbrugge, R., Van Klaveren, J., Liem, A., & Traag, W. (2004). Dioxins, dioxin-like PCBs and non-dioxin-like PCBs in foodstuffs: occurrence and dietary intake in the Netherlands. Toxicology Letters, 151(1), 51–61.

    Article  CAS  Google Scholar 

  • Banni, M., Bouraoui, Z., Ghedira, J., Clerandeau, C., Guerbej, H., Narbonne, J., & Boussetta, H. (2009). Acute effects of benzo [a] pyrene on liver phase I and II enzymes, and DNA damage on sea bream Sparus aurata. Fish Physiology and Biochemistry, 35(2), 293–299.

    Article  CAS  Google Scholar 

  • Commission Regulation (EU) 1259/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. 2011. Official Journal of the European Union, L320, 18–23. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:320:0018:0023:EN:PDF Accessed 18 June 2018.

  • Commission Regulation (EU) 208/2005 of 4 February 2005 amending Regulation (EC) No 466/2001 as regards polycyclic aromatic hydrocarbons (2005) Official Journal of the European Union, L34, 3–5. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2005:034:0003:0005:EN:PDF Accessed 18 June 2018.

  • Corsolini, S., Ademollo, N., Romeo, T., Greco, S., & Forcadi, S. (2005). Persistent organic pollutants in edible fish: a human and environmental health problem. Microchemical Journal, 79(1), 115–123.

    Article  CAS  Google Scholar 

  • Eisler R, Belisle, AA (1996) Planar PCB hazards to fish, wildlife, and invertebrates: A synoptic review. DTIC Document. https://clu-in.org/download/contaminantfocus/pcb/CHR_31_Planar_PCBs.pdf. Accessed 27 Aug 2019.

  • Fair, P. A., Adams, J., Mitchum, G., Hulsey, T. C., Rief, J. S., Houde, M., Muir, D., Wirth, E., Wetzel, D., Zolman, E., McFee, W., & Bossart, G. D. (2010). Contaminant blubber burdens in Atlantic bottlenose dolphins (Tursiops truncatus) from two southeastern US estuarine areas: concentrations and patterns of PCBs, pesticides, PBDEs, PFCs, and PAHs. Science of the Total Environment, 408(7), 1577–1597.

  • Galland, C., Dupy, C., Loizeau, V., Danion, M., Auffret, M., Quiniou, L., Laroche, J., & Pichereau, V. (2015). Proteomic analysis of the European flounder Platichthys flesus response to experimental PAH–PCB contamination. Marine Pollution Bulletin, 95(2), 646–657.

    Article  CAS  Google Scholar 

  • Govaerts, A., Verhaert, V., Covaci, A., Jaspers, V. L. B., Berg, O. K., Addo-Bediako, A., Jooste, A., & Bervoets, L. (2018). Distribution and bioaccumulation of POPs and mercury in the Ga-Selati River (South Africa) and the rivers Gudbrandsdalslågen and Rena (Norway). Environment International, 121(2), 1319–1330.

    Article  CAS  Google Scholar 

  • Johnson, L. L., Coiller, T. K., & Stein, J. (2002). An analysis in support of sediment quality thresholds for polycyclic aromatic hydrocarbons (PAHs) to protect estuarine fish. Aquatic Conservation, 12(5), 517–538.

    Article  Google Scholar 

  • Khadhar, S., Achour, D., Chekirben, A., Chawani, R., Mlayah, A., & Charef, A. (2018). Sediment-water column exchange of persistent organic pollutants (PAHs and PCBs) and their transport vector in El Bey watershed, Tunisia. Arabian Journal of Geosciences, 11, 1–9.

    Article  Google Scholar 

  • Lazartigues, A., Wiest, L., Baudot, R., Thomas, M., Feidt, C., & Cren-Olive, C. (2011). Multiresidue method to quantify pesticides in fish muscle by QuEChERS-based extraction and LC-MS/MS. Analytical and Bioanalytical Chemistry, 400(7), 2185–2193.

    Article  CAS  Google Scholar 

  • Liang, Y., Tse, M. F., Young, L., & Wong, M. H. (2007). Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong. Water Research, 41(6), 1303–1311.

    Article  CAS  Google Scholar 

  • Martínez, M., De La Torre, C. S., & Almarza, E. (2003). A comparative solid-phase extraction study for the simultaneous determination of fluoxetine, amitriptyline, nortriptyline, trimipramine, maprotiline, clomipramine, and trazodone in whole blood by capillary gas—liquid chromatography with nitrogen-phosphorus detection. Journal of Analytical Toxicology, 27(6), 353–358.

    Article  Google Scholar 

  • Miranda, A. L., Roche, H., Randi, M. A. F., Menezes, M. L., & Ribiero, C. A. O. (2008). Bioaccumulation of chlorinated pesticides and PCBs in the tropical freshwater fish Hoplias malabaricus: histopathological, physiological, and immunological findings. Environment International, 34(7), 939–949.

    Article  CAS  Google Scholar 

  • Naso, B., Perrone, D., Ferrante, M. C., Bilancione, M., & Lucisano, A. (2005). Persistent organic pollutants in edible marine species from the Gulf of Naples, Southern Italy. Science of the Total Environment, 343(1–3), 83–95.

    Article  CAS  Google Scholar 

  • Neff, J. M., Stout, S. A., & Gunster, D. G. (2005). Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: identifying sources and ecological hazard. Integrated Environmental Assessment, 1(1), 22–33.

    Article  CAS  Google Scholar 

  • Oduntan, A. O., Tavengwa, N. T., Cukrowska, E., Mhlanga, S. D., & Chimuka, L. (2016). QuEChERS method development for bio-monitoring of low molecular weight polycyclic aromatic hydrocarbons in South African carp fish using hplc-fluorescence: an initial assessment. SAJC, 69, 98–104.

    CAS  Google Scholar 

  • Oliva, A., La Colla, N. S., Arias, A. H., Blasina, G. E., Cazorla, A. L., & Marcovecchio, J. E. (2017). Distribution and human health risk assessment of PAHs in four fish species from a SW Atlantic estuary. Environmental Science and Pollution Research, 24(3), 18979–18990.

    Article  CAS  Google Scholar 

  • Ozogul, Y., Ozogul, F., & Alagoz, S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: a comparative study. Food Chemistry, 103, 217–223.

    Article  CAS  Google Scholar 

  • Pandelova, M., Henkelmann, B., Roots, O., Simm, M., Jarv, L., Benfenati, E., & Schramm, K. W. (2008). Levels of PCDD/F and dioxin-like PCB in Baltic fish of different age and gender. Chemosphere, 71(2), 369–378.

    Article  CAS  Google Scholar 

  • Pastor, D., Boix, J., Fernandez, V., & Albaiges, J. (1996). Bioaccumulation of organochlorinated contaminants in three estuarine fish species (Mullus barbatus, Mugil cephalus and Dicentrarcus labrax). Marine Pollution Bulletin, 32(3), 257–262.

    Article  CAS  Google Scholar 

  • Peruginni, M., Cavaliere, M., Giammarino, A., Mazzone, P., Olivieri, V., & Amorena, M. (2004). Levels of polychlorinated biphenyls and organochlorine pesticides in some edible marine organisms from the Central Adriatic Sea. Chemosphere, 57(5), 391–400.

    Article  CAS  Google Scholar 

  • Przybylski, C., & Segard, C. (2009). Method for routine screening of pesticides and metabolites in meat based baby food using extraction and gas chromatography-mass spectrometry. Journal of Separation Science, 32(11), 1858–1867.

    Article  CAS  Google Scholar 

  • Rao, R. N., Prasad, K. G., Kumar, K. S., & Ramesh, B. (2013). Diatomaceous earth supported liquid extraction and LC-MS/MS determination of elvitegravir and ritonavir in rat plasma: application to a pharmacokinetic study. Analytical Methods, 5, 6693–6699.

    Article  CAS  Google Scholar 

  • Reid, B. J., Jones, K. C., & Semple, K. T. (2000). Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environmental Pollution, 108(1), 103–112.

    Article  CAS  Google Scholar 

  • Rimayi, C., Chimuka, L., Odusanya, D., de Boer, J., & Weiss, J. M. (2017). Source characterisation and distribution of selected PCBs, PAHs and alkyl PAHs in sediments from the Klip and Jukskei Rivers, South Africa. Environmental Monitoring and Assessment, 189(7), 327.

    Article  CAS  Google Scholar 

  • Rufina, C. C., Hoffman, C. L., Opara, L. U., O'Neill, B., & Stander, A. M. (2017). Polycyclic aromatic hydrocarbons (PAHs) and organochlorinated pesticides (OCPs) in yellowtail (Seriola lalandi) from three spatially distinct locations along the coast. Journal of Food Processing & Technology, 8(1), 644.

    Article  CAS  Google Scholar 

  • Sánchez de la Torre, C., Martínez, M. A., & Almarza, E. (2005). Determination of several psychiatric drugs in whole blood using capillary gas–liquid chromatography with nitrogen phosphorus detection: comparison of two solid phase extraction procedures. Forensic Science International, 155(2–3), 193–204.

    Article  CAS  Google Scholar 

  • Shimada, T., & Fujii-Kuriyama, Y. (2004). Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochrome P450 1A1 and 1B1. Cancer Science, 95(1), 1–6.

    Article  CAS  Google Scholar 

  • Sijm, D. T. H. M., Seinen, W., & Opperhuizen, A. (1992). Life-cycle biomagnification study in fish. Environmental Science & Technology, 26(11), 2162–2173.

    Article  CAS  Google Scholar 

  • Sijm, D., Kraaij, R., & Belfroid, A. (2000). Bioavailability in soil or sediment: exposure of different organisms and approaches to study it. Environmental Pollution, 108(1), 113–119.

    Article  CAS  Google Scholar 

  • Smith, J. N., Mehinagic, D., Nag, S., Crowell, S. R., & Corley, R. A. (2017). In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes. Toxicology Letters, 269, 23–32.

    Article  CAS  Google Scholar 

  • Squadrone, S., Prearo, M., Nespoli, R., Scanzio, T., & Abete, M. C. (2016). PCDD/Fs, DL-PCBs and NDL-PCBs in European catfish from a northern Italian lake: the contribution of an alien species to human exposure. Ecotoxicology and Environmental Safety, 125, 170–175.

    Article  CAS  Google Scholar 

  • Squandrone, S., Favaro, L., Prearo, M., Vivaldi, B., & Abete, M. C. (2013). NDL-PCBs in muscle of the European catfish (Silurus glanis): an alert from Italian rivers. Chemosphere, 93, 521–525.

    Article  CAS  Google Scholar 

  • Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: an overview of possibilities. Reviews of Environmental Contamination and Toxicology, 49–133.

  • Stołyhwo, A., & Sikorski, Z. E. (2005). Polycyclic aromatic hydrocarbons in smoked fish–a critical review. Food Chemistry, 91(2), 303–311.

    Article  CAS  Google Scholar 

  • Traven, L. (2013). Sources, trends and ecotoxicological risks of PAH pollution in surface sediments from the northern Adriatic Sea (Croatia). Marine Pollution Bulletin, 77(1–2), 445–450.

    Article  CAS  Google Scholar 

  • Tuvikene, A. (1995). Responses of fish to polycyclic aromatic hydrocarbons (PAHs). Annales Zoologici Fennici, 32(3), 295–309.

    Google Scholar 

  • van der Oost, R., Heida, H., Opperhuizen, A., & Vermulein, P. E. (1991). Interrelationships between bioaccumulation of organic trace pollutants (PCBs, organochlorine pesticides and PAHs), and MFO induction in fish. Comparative Biochemistry and Physiology. C, 100(1–2), 43–47.

    Article  Google Scholar 

  • van der Welden, M. E. J., Hanegraaf, F. H. M., Eggens, M. L., Celander, M., Seinen, W., & van den Berg, M. (1994). Temporal induction of cytochrome P450 1A in the mirror carp (Cyprinus caprio) after administration of several polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 13(5), 797–802.

    Article  Google Scholar 

  • Vieira, C. E. D., Costa, P. G., Caldas, S. S., Tesser, M. E., Risso, W. E., Escarrone, A. L. V., Primel, E. G., Bianchini, A., & Martinez, C. B. D. (2019). An integrated approach in subtropical agro-ecosystems: active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish. Science of the Total Environment, 666, 508–524.

    Article  CAS  Google Scholar 

  • Vudathala, D., Cummings, M., & Murphy, L. (2010). Analysis of multiple anticoagulant rodenticides in animal blood and liver tissue using principles of QuEChERS method. Journal of Analytical Science and Technology, 34(5), 273–279.

    CAS  Google Scholar 

  • Wolkers, W. F., Balasubramanian, S. K., Ongstad, E. L., Zec, H. C., & Bischof, J. C. (2007). Effects of freezing on membranes and proteins in LNCaP prostate tumour cells. Biochimica et Biophysica Acta, 1768(3), 728–736.

    Article  CAS  Google Scholar 

  • Xu, F., Wu, W., Wang, J., Qin, N., Wang, Y., He, Q., He, W., & Tao, S. (2011). Residual levels and health risk of polycyclic aromatic hydrocarbons in freshwater fishes from Lake Small Bai-Yang-Dian, Northern China. Ecological Modelling, 222(2), 275–286.

    Article  CAS  Google Scholar 

  • Yamamuro, T., Ohta, H., Aoyama, M., & Watanabe, D. (2014). Simultaneous determination of neonicotinoid insecticides in human serum and urine using diatomaceous earth-assisted extraction and liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 969, 85–94.

    Article  CAS  Google Scholar 

  • Yeannesa, M. I., & Almandos, M. E. (2003). Estimation of fish proximate composition starting from water content. Journal of Food Composition and Analysis, 16, 81–92.

    Article  Google Scholar 

  • Yunker, M. B., & Macdonald, R. W. (2003). Alkane and PAH depositional history, sources and fluxes in sediments from the Fraser River Basin and Strait of Georgia, Canada. Organic Geochemistry, 34(10), 1429–1454.

    Article  CAS  Google Scholar 

  • Zhao, Z., Zhang, L., Cai, Y., & Chen, Y. (2014). Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicology and Environmental Safety, 104, 323–331.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the assistance of Ms. Lynette Sena from the University of the Witwatersrand School of Anatomical Sciences for the help with fish dissection and Dr. Peter Gorst-Allman for assistance with PCB analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius Rimayi.

Ethics declarations

The authors declare that there are no conflicts of interest or breach of ethical standards

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimayi, C., Chimuka, L. Organ-specific bioaccumulation of PCBs and PAHs in African sharptooth catfish (Clarias gariepinus) and common carp (Cyprinus carpio) from the Hartbeespoort Dam, South Africa. Environ Monit Assess 191, 700 (2019). https://doi.org/10.1007/s10661-019-7912-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7912-3

Keywords

Navigation