Skip to main content
Log in

Development of Ag–CeO2 Bimetallic Nanocomposite for Visible-Light-induced Photocatalytic Degradation of Eriochrome Black T

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A simple co-precipitation method was adopted to synthesize the Silver-Cerium oxide (Ag–CeO2) bimetallic nanocomposite (BMNPs) using Lantana Camara extract, which can work as a reducing agent and capping agent to stabilize the desired BMNPs. The color change from yellowish brown to dark brown indicates the formation of nanoparticles, which were further identified through the absorbance peaks of UV–Vis at 284 and 428 nm for cerium oxide (CeO2) and (Ag), respectively. As-synthesized BMNPs were characterized using Fourier transform infrared spectroscopy (FTIR), Zeta potential, X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), and Thermogravimetric analysis (TGA). The Zeta potential of Ag, CeO2, and Ag–CeO2 was found to be − 13, − 1.57, and − 1.4 mV, respectively. Moreover, the XRD results confirmed the formation of a cubic crystalline structure of BMNPs. The photocatalytic degradation efficiency of BMNPs was 85% for Eriochrome Black T by Ag–CeO2. The study provides a new route toward the green synthesis of bimetallic nanoparticles for degrading hazardous textile dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Abdullah M, John P, Ahmad Z, Ashiq MN, Manzoor S, Ghori MI, Ahmed S (2021) Visible-light-driven ZnO/ZnS/MnO2 ternary nanocomposite catalyst: synthesis, characterization and photocatalytic degradation of methylene blue. Appl Nanosci 11(8):2361–2370. https://doi.org/10.1007/s13204-021-02008-x

    Article  CAS  Google Scholar 

  2. Ahmed S (2022) CTAB-assisted fabrication of hierarchical flower-like magnesium oxide adsorbent for enhanced removal performance towards phosphate. J Magn Alloys. https://doi.org/10.1016/j.jma.2022.02.007

    Article  Google Scholar 

  3. Ahmed S, Ahmad Z (2020) Development of hexagonal nanoscale nickel ferrite for the removal of organic pollutant via Photo-Fenton type catalytic oxidation process. Environ Nanotechnol Monitor Manag 14:100321. https://doi.org/10.1016/j.enmm.2020.100321

    Article  Google Scholar 

  4. Ahmed S, Ahmad Z, Kumar A, Rafiq M, Vashistha VK, Ashiq MN, Kumar A (2021) Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese. J Phys Chem Solids 155:110121. https://doi.org/10.1016/j.jpcs.2021.110121

    Article  CAS  Google Scholar 

  5. Ahmed S, Akram MY, Kumar A, Dhir A, Ali Z, Kansal SK, Ratan JK (2022) Development of magnesium oxide@carbon fiber paper composite film for the removal of methyl orange from aqueous phase. Nanotechnol Environ Eng 7(1):49–56. https://doi.org/10.1007/s41204-021-00181-6

    Article  CAS  Google Scholar 

  6. Ahmed S, Ashiq NM, Li D, Tang P, Leroux F, Feng Y (2019) Recent progress on adsorption materials for phosphate removal. Recent Pat Nanotechnol 13(1):3–16. https://doi.org/10.2174/1872210513666190306155245

    Article  CAS  PubMed  Google Scholar 

  7. Ahmed S, Iqbal A (2018) Synthesis of 2D magnesium oxide nanosheets: a potential material for phosphate removal. Global Chall 2(12):1800056. https://doi.org/10.1002/gch2.201800056

    Article  Google Scholar 

  8. Ahmed S, Pan J, Ashiq MN, Li D, Tang P, Feng Y (2019) Ethylene glycol-assisted fabrication and superb adsorption capacity of hierarchical porous flower-like magnesium oxide microspheres for phosphate. Inorg Chem Front 6(8):1952–1961. https://doi.org/10.1039/C9QI00331B

    Article  CAS  Google Scholar 

  9. Ahmed S, Rehman HU, Ali Z, Qadeer A, Haseeb A, Ajmal Z (2021) Solvent assisted synthesis of hierarchical magnesium oxide flowers for adsorption of phosphate and methyl orange: Kinetic, isotherm, thermodynamic and removal mechanism. Surf Interfaces 23:100953. https://doi.org/10.1016/j.surfin.2021.100953

    Article  CAS  Google Scholar 

  10. Anupong W, On-uma R, Jutamas K, Joshi D, Salmen SH, Alahmadi TA, Jhanani GK (2023) Cobalt nanoparticles synthesizing potential of orange peel aqueous extract and their antimicrobial and antioxidant activity. Environ Res 216:114594. https://doi.org/10.1016/j.envres.2022.114594

    Article  CAS  PubMed  Google Scholar 

  11. Carey T, Cassidy O, Synnatschke K, Caffrey E, Garcia J, Liu S, Coleman JN (2023) High-mobility flexible transistors with low-temperature solution-processed tungsten dichalcogenides. ACS Nano 17(3):2912–2922. https://doi.org/10.1021/acsnano.2c11319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mali C, Dhaka S, Sheetal AS, Rohini T (2023) Review on biogenic synthesis of copper nanoparticles and its potential applications. Inorg Chem Commun 149:110448. https://doi.org/10.1016/j.inoche.2023.110448

    Article  CAS  Google Scholar 

  13. Chang Y, Dou N, Liu M, Jiang M, Men J, Cui Y, Zhu Y (2020) Efficient removal of anionic dyes from aqueous solution using CTAB and β-cyclodextrin-induced dye aggregation. J Mol Liq 309:113021

    Article  CAS  Google Scholar 

  14. Choi Y, Jung E-Y, Lee W, Choi S, Son H, Lee Y (2023) In vitro bioanalytical assessment of the occurrence and removal of bioactive chemicals in municipal wastewater treatment plants in Korea. Sci Total Environ 858:159724. https://doi.org/10.1016/j.scitotenv.2022.159724

    Article  CAS  PubMed  Google Scholar 

  15. Das S, Panicker NJ, Rather MA, Mandal M, Sahu PP (2022) Green synthesis of cerium oxide nanoparticles using Dillenia indica aqueous extract and its anti-oxidant activity. Bull Mater Sci 46(1):3. https://doi.org/10.1007/s12034-022-02844-9

    Article  CAS  Google Scholar 

  16. Devaraj P, Kumari P, Aarti C, Renganathan A (2013) Synthesis and characterization of silver nanoparticles using cannonball leaves and their cytotoxic activity against MCF-7 Cell Line. J Nanotechnol 2013:598328. https://doi.org/10.1155/2013/598328

    Article  CAS  Google Scholar 

  17. Dhiman V, Kondal N, Choudhary P (2023) Bryophyllum pinnatum leaf extract mediated ZnO nanoparticles with prodigious potential for solar driven photocatalytic degradation of industrial contaminants. Environ Res 216:114751. https://doi.org/10.1016/j.envres.2022.114751

    Article  CAS  PubMed  Google Scholar 

  18. Essghaier B, Dridi R, Mottola F, Rocco L, Zid MF, Hannachi H (2023) Biosynthesis and characterization of silver nanoparticles from the extremophile plant Aeonium haworthii and their antioxidant, antimicrobial and anti-diabetic capacities. Nanomaterials. https://doi.org/10.3390/nano13010100

    Article  PubMed  PubMed Central  Google Scholar 

  19. Farahmandjou M, Zarinkamar M, Firoozabadi T (2016) Synthesis of cerium oxide (CeO2) nanoparticles using simple CO-precipitation method. Rev Mex Fis 62:496–499

    CAS  Google Scholar 

  20. Jayarambabu N, Venkatappa Rao T, Rakesh Kumar R, Akshaykranth A, Shanker K, Suresh V (2021) Anti-hyperglycemic, pathogenic and anticancer activities of Bambusa arundinacea mediated Zinc Oxide nanoparticles. Mater Today Commun 26:101688. https://doi.org/10.1016/j.mtcomm.2020.101688

    Article  CAS  Google Scholar 

  21. Korah BK, Mathew B (2023) Sustainable carbon quantum dots from Vitex negundo leaves as a synergistic nanoplatform for triple object sensing and anticounterfeiting applications. Mater Today Sustain 21:100273. https://doi.org/10.1016/j.mtsust.2022.100273

    Article  Google Scholar 

  22. Mehrzad M, Behpour M, Kashi FJ (2023) Novel environmental method for enhanced biodegradation of contaminated wastewater via immobilizing nanoparticles on a new bacterial strain isolated industrial textile. J Environ Manage 325:116528. https://doi.org/10.1016/j.jenvman.2022.116528

    Article  CAS  PubMed  Google Scholar 

  23. Nadeem M, Khan R, Afridi K, Nadhman A, Ullah S, Faisal S, Abbasi BH (2020) Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int J Nanomed 15:5951–5961

    Article  CAS  Google Scholar 

  24. Parimi D, Sundararajan V, Sadak O, Gunasekaran S, Sahabudeen SM, Sundaramurthy A (2019) Synthesis of positively and negatively charged CeO2 nanoparticles: investigation of the role of surface charge on growth and development of drosophila melanogaster. ACS Omega 4:104–113. https://doi.org/10.1021/acsomega.8b02747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sajid A, Manzoor Q, Sajid A, Imran M, Khalid S, Arshad Z, Aslam F (2021) Characterization and antibacterial properties of Eriobotrya japonica extract loaded silver-nanoparticles. Curr Bioact Compd 17(7):58–63

    Article  Google Scholar 

  26. Saravanan K, Shanthi B, Ravichandran C, Venkatachalapathy B, Sathiyanarayanan KI, Rajendran S, Suresh R (2023) Transformation of used aluminium foil food container into AlOOH nanoflakes with high catalytic activity in anionic azo dye reduction. Environ Res 218:114985. https://doi.org/10.1016/j.envres.2022.114985

    Article  CAS  PubMed  Google Scholar 

  27. Schlögl R (2015) Heterogeneous catalysis. Angew Chem Int Ed 54(11):3465–3520. https://doi.org/10.1002/anie.201410738

    Article  CAS  Google Scholar 

  28. Senanu LD, Kranjac-Berisavljevic G, Cobbina SJ (2023) The use of local materials to remove heavy metals for household-scale drinking water treatment: a review. Environ Technol Innov 29:103005. https://doi.org/10.1016/j.eti.2023.103005

    Article  CAS  Google Scholar 

  29. Shen B, Li W, Wang Y, Cheng S, Wang X, Zhu L, Jiang L (2023) Rapid capture and killing of bacteria by lyophilized nFeS-Hydrogel for improved healing of infected wounds. Biomater Adv 144:213207. https://doi.org/10.1016/j.bioadv.2022.213207

    Article  CAS  PubMed  Google Scholar 

  30. Siddiqi KS, Husen A, Rao RAK (2018) A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnol 16(1):14. https://doi.org/10.1186/s12951-018-0334-5

    Article  CAS  Google Scholar 

  31. Silva MR, Tita V, De Medeiros R (2023) Influence of the geometric parameters on the effective properties of piezoelectric composite sensors using real measurements and a new RVE. Compos Struct 303:116292. https://doi.org/10.1016/j.compstruct.2022.116292

    Article  CAS  Google Scholar 

  32. Thamarai Selvi S, Sunitha R, Ammayappan L, Prakash C (2023) Impact of chemical treatment on surface modification of agave americana fibres for composite application—a futuristic approach. J Natl Fib 20(1):2142726. https://doi.org/10.1080/15440478.2022.2142726

    Article  CAS  Google Scholar 

  33. Ur Rehman H, Ahmed S, Ur Rahman M, Mehmood Muhammad S (2022) Arsenic contamination, induced symptoms, and health risk assessment in groundwater of Lahore, Pakistan. Environ Sci Pollut Res 29(33):49796–49807. https://doi.org/10.1007/s11356-022-19405-6

    Article  CAS  Google Scholar 

  34. Vidyasagar P, Raj R, Singh SK, Singh M (2023) Green synthesis of silver nanoparticles: methods, biological applications, delivery and toxicity. Mater Adv. https://doi.org/10.1039/D2MA01105K

    Article  Google Scholar 

  35. Wang J, Fan D, Zhang L, Yang D, Qiu X, Lin X (2023) Lignin-derived hierarchical porous carbon with high surface area and interconnected pores for efficient antibiotics adsorption. Chem Eng J 454:139789. https://doi.org/10.1016/j.cej.2022.139789

    Article  CAS  Google Scholar 

  36. Wang Q, Wang B, Shi D, Li F, Ling D (2023) Cerium oxide nanoparticles-based optical biosensors for biomedical applications. Adv Sens Res 2(3):2200065. https://doi.org/10.1002/adsr.202200065

    Article  Google Scholar 

  37. Wang Q, Zhang P, Zhao W, Li Y, Jiang Y, Rui Y, Lynch I (2023) Interplay of metal-based nanoparticles with plant rhizosphere microenvironment: implications for nanosafety and nano-enabled sustainable agriculture. Environ Sci Nano 10(2):372–392. https://doi.org/10.1039/D2EN00803C

    Article  CAS  Google Scholar 

  38. Xie L, Du T, Wang J, Ma Y, Ni Y, Liu Z, Wang J (2021) Recent advances on heterojunction-based photocatalysts for the degradation of persistent organic pollutants. Chem Eng J 426:130617. https://doi.org/10.1016/j.cej.2021.130617

    Article  CAS  Google Scholar 

  39. Yin C, Li X, Wang Y, Liang Y, Zhou S, Zhao P, Huang W (2021) Organic semiconducting macromolecular dyes for nir-ii photoacoustic imaging and photothermal therapy. Adv Funct Mater 31(37):2104650. https://doi.org/10.1002/adfm.202104650

    Article  CAS  Google Scholar 

  40. Zhang H, Zhang F, Sun W, Chen D, Chen J, Wang R, Zhang C (2023) The effects of hydroxyl on selective separation of chalcopyrite from pyrite: a mechanism study. Appl Surf Sci 608:154963. https://doi.org/10.1016/j.apsusc.2022.154963

    Article  CAS  Google Scholar 

  41. Zhao J, Gao N, Xu J, Zhu X, Ling G, Zhang P (2023) Novel strategies in melanoma treatment using silver nanoparticles. Cancer Lett 561:216148. https://doi.org/10.1016/j.canlet.2023.216148

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Chemistry, The University of Lahore, for providing facilities to complete this research work.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qaisar Manzoor or Saeed Ahmed.

Ethics declarations

Conflict of Interest

All authors have no conflict of interest.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, A., Javed, R., Manzoor, Q. et al. Development of Ag–CeO2 Bimetallic Nanocomposite for Visible-Light-induced Photocatalytic Degradation of Eriochrome Black T. Chemistry Africa 7, 2103–2110 (2024). https://doi.org/10.1007/s42250-023-00864-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00864-4

Keywords

Navigation