Skip to main content
Log in

Photoreduction synthesis of silver on Bi2O3/TiO2 nanocomposites and their catalytic activity for the degradation of methyl orange

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper demonstrates the preparation of pure TiO2, 40% of Bi2O3 in TiO2 and Ag loaded Bi2O3/TiO2 nanocomposites by the hydrothermal method followed by the photoreduction process. The crystal structure, morphology and composition of the samples were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy respectively. The dispersion of Ag nanoparticles on the surface of Bi2O3/TiO2 nanocomposites are found to bring the conduction band near to the valence band, resulting in the narrow band gap compared to pure TiO2 and Bi2O3/TiO2 nanocomposites. The XRD analysis demonstrated that silver nanoparticles were dispersed finely on the surface of Bi2O3/TiO2 nanocomposites. All the characterization results revealed that the Ag/Bi2O3/TiO2 nanocomposites were smaller crystallite size, stronger absorbance in the visible region and greater surface area than pure TiO2 and Bi2O3/TiO2 nanocomposites. The photoluminescence intensity decreases with an increase in the UV-illumination time of Ag loaded Bi2O3/TiO2 revealing a decrease in the recombination rate of electron–hole pairs. In order to test them as a photocatalyst, methyl orange was used as a standard. The photocatalytic degradation of methyl orange shows that the ABT5 sample exhibits the maximum degradation efficiency of 99% within 180 min of irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  2. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  3. W. Choi, A. Termin, M.R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 98, 13669–13679 (1994)

    Article  Google Scholar 

  4. A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form- controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999)

    Article  CAS  Google Scholar 

  5. Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, Self-assembly of active Bi2O3/TiO2 visible photocatalyst with ordered mesoporous structure and highly crystallized anatase. J. Phys. Chem. C 112, 6258–6262 (2008)

    Article  CAS  Google Scholar 

  6. S. Shamaila, A.K. Sajjad, F. Chen, J.L. Zhang, Study on highly visible light active Bi2O3 loaded ordered mesoporous titania. Appl. Catal B 94, 272–280 (2010)

    Article  CAS  Google Scholar 

  7. P.V. Kamat, Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–7744 (2002)

    Article  CAS  Google Scholar 

  8. Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, T.P. Perng, Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. J. Phys. Chem. C 115, 9498–9502 (2011)

    Article  CAS  Google Scholar 

  9. Y. Lai, H. Zhuang, K. Xie, D. Gong, Y. Tang, L. Sun, C. Lin, Z. Chen, Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance. New J. Chem. 34, 1335–1340 (2010)

    Article  CAS  Google Scholar 

  10. Q. Wang, X. Yang, D. Liu, J. Zhao, Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs. J. Alloys Compd. 527, 106–111 (2012)

    Article  CAS  Google Scholar 

  11. X. He, Y. Cai, H. Zhang, C. Liang, Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 21, 475–480 (2011)

    Article  CAS  Google Scholar 

  12. M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D. Pathinettam Padiyan, Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange. J. Nanopart. Res. 19, 144 (2017)

    Article  Google Scholar 

  13. M. Malligavathy, S. Iyyapushpam, S.T. Nishanthi, D. Pathinettam Padiyan, Optimising the crystallinity of anatase TiO2 nanospheres for the degradation of congo red dye. J. Exp. Nanosci. 11, 1074–1086 (2016)

    Article  CAS  Google Scholar 

  14. M. Nasir, S. Bagwasi, Y. Jiao, F. Chen, B. Tian, J. Zhang, Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method. Chem. Eng. J. 236, 388–397 (2014)

    Article  CAS  Google Scholar 

  15. M.K. Seery, R. George, P. Floris, S.C. Pillai, Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A 189, 258–263 (2007)

    Article  CAS  Google Scholar 

  16. B.D. Culity, Elements of X-ray diffraction (Addison Wesley publishing Co., London, 1978), p. 284

    Google Scholar 

  17. T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase TiO2. J. Raman Spectrosc. 7, 321–324 (1978)

    Article  Google Scholar 

  18. X. Wang, J. Shen, Q. Pan, Raman spectroscopy of sol–gel derived titanium oxide thin films. J. Raman Spectrosc. 42, 1578–1582 (2011)

    Article  CAS  Google Scholar 

  19. W.D. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A 235, 194–199 (2005)

    Article  CAS  Google Scholar 

  20. S.K. Das, M.K. Bhunia, A. Bhaumik, Self-assembled TiO2 nanoparticles: mesoporosity, optical and catalytic properties. Dalton Trans. 39, 4382–4390 (2010)

    Article  CAS  Google Scholar 

  21. A.R. Malagutti, H.A.J.L. Mourao, J.R. Garbin, C. Riberiro, Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursor method and their application in the photodegradation of textile dyes. Appl. Catal. B 90, 205–212 (2009)

    Article  CAS  Google Scholar 

  22. L. Yang, B. Kruse, Revised Kubelka–Munk theory. I. Theory and application. J. Opt. Soc. Am. A 21, 1933–1941 (2004)

    Article  Google Scholar 

  23. X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012)

    Article  CAS  Google Scholar 

  24. H. Li, B. Yu, Y. Fan, Dramatic activity of mixed-phase TiO2 photocatalyst synthesized by hydrothermal method. Chem. Phys. Lett. 558, 66–71 (2013)

    Article  CAS  Google Scholar 

  25. J.G. Yu, L. Yue, S.W. Liu, B.B. Huang, X.Y. Zhang, Hydrothermal preparation and photocatalytic activity of mesoporous Au–TiO2 nanocomposite microspheres. J. Colloid Interface Sci. 334, 58–64 (2009)

    Article  CAS  Google Scholar 

  26. Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, Hydrothermal synthesis and photoluminescence of TiO2 nanowires. Chem. Phys. Lett. 365, 300–304 (2002)

    Article  CAS  Google Scholar 

  27. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)

    Article  CAS  Google Scholar 

  28. X. Jiang, Y. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C. Pan, Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C 116, 22619–22624 (2012)

    Article  CAS  Google Scholar 

  29. F. Rouquerol, J. Rouquerol, K. Singh, Adsorption by Powders & Porous solids: principles, methodology and applications (Academic Press, San Diego, 1999), p.g.no: 93

    Book  Google Scholar 

  30. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992)

    Article  CAS  Google Scholar 

  31. J.G. Yu, H.G. Yu, B. Cheng, C. Trapalis, Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J. Mol. Catal. A 249, 135–142 (2006)

    Article  CAS  Google Scholar 

  32. S.J. Gregg, K.S.W. Singh, Adsorption, Surface Area and Porosity. (Academic Press, London, 1982)

    Google Scholar 

  33. M. Sylwia, T. Maria, M. Antoni, Photocatalytic degradation of azo-dye acid red 18. Desalination 185, 449–456 (2005)

    Article  Google Scholar 

  34. D. Zhang, X. Pu, G. Ding, X. Shao, Y. Gao, J. Liu, M. Gao, Y. Li, Two-phase hydrothermal synthesis of TiO2–graphene hybrids with improved photocatalytic activity. J. Alloys Compd. 572, 199–204 (2013)

    Article  CAS  Google Scholar 

  35. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. Appl. Mater. Interface 2, 2385–2392 (2010)

    Article  CAS  Google Scholar 

  36. B. Aysin, A. Ozturk, J. Park, Silver loaded titanium dioxide powders produced through mechanical ball milling. Ceram. Int. 39, 7119–7126 (2013)

    Article  CAS  Google Scholar 

  37. J. Hou, C. Yang, Z. Wang, W. Zhou, S. Jiao, H. Zhu, In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible- light photocatalytic performance. Appl. Catal. B. 142–143, 504–511 (2013)

    Article  Google Scholar 

  38. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites. Water Res. 18, 1501–1507 (1984)

    Article  CAS  Google Scholar 

  39. K. Vasanth Kumar, Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J. Hazard Mater. B 137, 1538–1544 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors M. Malligavathy would like to thank UGC, New Delhi for BSR fellowship. The authors thank SAIF, IIT Madras for recording HR-SEM and FT-Raman measurement and also thank IIT, Bombay for recording TEM measurement. The authors acknowledge the UGC-SAP-DRB-II for the financial assistance rendered to the Department of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malligavathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malligavathy, M., Iyyapushpam, S., Nishanthi, S.T. et al. Photoreduction synthesis of silver on Bi2O3/TiO2 nanocomposites and their catalytic activity for the degradation of methyl orange. J Mater Sci: Mater Electron 28, 18307–18321 (2017). https://doi.org/10.1007/s10854-017-7777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7777-6

Navigation