Skip to main content
Log in

Eco-friendly synthesis of Ag-ZrO2 nanocomposites for degradation of methylene blue

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we have successfully synthesized ZrO2 nanoparticles (NPs) using Ficus benghalensis (FB) leaf extract via simple microwave-assisted method. Silver NPs were deposited on the surface of ZrO2 through photocatalytic reduction. The synthesized ZrO2 and Ag-ZrO2 photocatalysts were characterized through X-ray Diffraction (XRD), UV–Vis Diffuse Reflectance Spectroscopy (DRS), Fourier Transform-Infrared Spectroscopy (FT-IR), High-Resolution Transmission Electron Microscopy (HR-TEM), Photoluminescence (PL), and Brunauer–Emmett–Teller (BET) surface area. From the aforesaid characterization of the materials, it is revealed that synthesized Ag NPs are crystalline in nature with the face-centered cubic structure (FCC), while ZrO2 NPs have both monoclinic and tetragonal phases. TEM images indicate that both ZrO2 and Ag-ZrO2 nanocomposite have spherical shape with the particle size of 20 and 15 nm, respectively. The optical properties were obtained using UV–Vis DRS which showed a decrease in the band gap energy of ZrO2 due to surface plasmon resonance (SPR) effect of Ag NPs. A lower in PL intensity of Ag-ZrO2 compared to that of ZrO2 NPs confirms the suppression of recombination rate of excited electron–hole pairs ultimately resulted into high photocatalytic activity. BET analysis shows that all the nanocomposites have higher surface area than pure ZrO2. The pure ZrO2 and Ag-ZrO2 show the efficient photocatalytic activity towards the methylene blue (MB) and methyl orange (MO). Ag-ZrO2 (1.0 wt.%) shows 21% increment in photocatalytic activity as compared to pure ZrO2 within 160 min under UV–Vis light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Chen, H. Zhang, W. Liu, W. Zhang, PLoS ONE e103, 99 (2014)

    Google Scholar 

  2. S. Ray, M. Takafuji, H. Ihara, RSC Adv. 3, 23664 (2013)

    Article  CAS  Google Scholar 

  3. J. Ma, S. Guo, X. Guo, H. Ge, Ceram. Int. 41, 1245 (2015)

    Google Scholar 

  4. A. Aal, S. Mahmoud, A. Aboul-Gheit, Mater. Sci. Eng. C 29, 831 (2009)

    Article  Google Scholar 

  5. I. Singh, B. Birajdar, RSC Adv. 7, 54053 (2017)

    Article  CAS  Google Scholar 

  6. P. Reddy, P.L. Reddy, E. Kwon, K. Kim, T. Akter, S. Kalagar, Environ. Int. 91, 94 (2016)

    Article  CAS  Google Scholar 

  7. K. Mondal, Inventions 2, 1 (2017)

    Article  Google Scholar 

  8. X. Wang, Z. Zhao, D. Ou, B. Tu, D. Cui, X. Wei, M. Cheng, RSC Adv. 6, 38153 (2016)

    Article  CAS  Google Scholar 

  9. M. Shang, H. Hou, F. Gao, L. Wang, W. Yang, RSC Adv. 7, 30051 (2017)

    Article  CAS  Google Scholar 

  10. Y. Lai, H. Lu, Y. Hsun, A.C.S. Sustain, Chem. Eng. 5, 7716 (2017)

    CAS  Google Scholar 

  11. M. Ehsan, T. Yazdi, J. Khara, H.R. Sadeghnia, S.E. Bahabadi, M. Darroudi, Res. Chem. Intermed. 44, 1325 (2018)

    Article  Google Scholar 

  12. J.C. Colmenares, R. Luque, J.M. Campelo, F. Colmenares, Z. Karpinski, A.A. Romero, Materials 2, 2228 (2009)

    Article  CAS  Google Scholar 

  13. Z. Guo, J. Zhou, L. An, J. Jiang, G. Zhu, C. Deng, J. Mater. Chem. A 2, 20358 (2014)

    Article  CAS  Google Scholar 

  14. S.T. Kochuveedu, Y.H. Jang, D.H. Kim, Chem. Soc. Rev. 42, 8467 (2013)

    Article  CAS  Google Scholar 

  15. A.S. Kushwaha, A. Kumar, R. Kumar, S.K. Srivastava, Photonics Nanostructures Fundam. Appl. 31, 99 (2018)

    Article  Google Scholar 

  16. G.L. Chiarello, E. Selli, L. Forni, Appl. Catal. B: Environ. 84, 332 (2008)

    Article  CAS  Google Scholar 

  17. M. Shah, D. Fawcett, S. Sharma, S.K. Tripathy, G.E.J. Poinern, Materials 8, 7278 (2015)

    Article  CAS  Google Scholar 

  18. X. Zhang, Z. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016)

    Article  Google Scholar 

  19. H. Sudrajat, S. Babel, H. Sakai, S. Takizawa, J. Environ. Manage. 165, 224 (2016)

    Article  CAS  Google Scholar 

  20. Y. Liang, C. Wang, C. Kei, Y. Hsueh, W. Cho, T. Perng, J. Phys. Chem. C 115, 9498 (2011)

    Article  CAS  Google Scholar 

  21. B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, J. Colloid Interface Sci. 311, 417 (2007)

    Article  CAS  Google Scholar 

  22. J. Yao, C. Wang, Int. J. Photoenergy 2010, 1 (2010)

    Article  Google Scholar 

  23. J. Taing, M.H. Cheng, J.C. Hemminger, ACS Nano 5, 6325 (2011)

    Article  CAS  Google Scholar 

  24. F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Appl. Sci. 9, 2489 (2019)

    Article  CAS  Google Scholar 

  25. H.M. Shinde, T.T. Bhosale, N.L. Gavade, S.B. Babar, R.J. Kamble, B.S. Shirke, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 29, 14055 (2018)

    Article  CAS  Google Scholar 

  26. Y. Bai, W. Zhang, Z. Zhang, J. Zhou, X. Wang, C. Wang, W. Huang, J. Jiang, Y. Xiong, J. Am. Chem. Soc. 136, 14650 (2014)

    Article  CAS  Google Scholar 

  27. S. Fu, Y. Hsu, M. Chen, C. Chuang, Y. Chen, Y. Lin, Opt. Express 22, 14617 (2014)

    Article  CAS  Google Scholar 

  28. A.A. Ashkarran, S.M. Aghigh, S.A. Afshar, M. Kavianipour, M. Ghoranneviss, Synth. React. Inorg. Metal-Organic 41, 425 (2011)

    Article  CAS  Google Scholar 

  29. S. Yakout, H. Hassan, Molecules 19, 9160 (2014)

    Article  Google Scholar 

  30. A. Annu, C. Sivasankari, U. Krupasankar, Mater. Today 33, 5317 (2020)

    CAS  Google Scholar 

  31. J. Yu, J. Xiong, B. Cheng, S. Liu, Appl. Catal. B: Environ. 60, 211 (2005)

    Article  CAS  Google Scholar 

  32. S. Adhikari, A. Banerjee, N. Eswar, D. Sarkar, G. Madras, RSC Adv. 5, 51067 (2015)

    Article  CAS  Google Scholar 

  33. X. Ye, Y. Zhou, Y. Sun, J. Chen, Z. Wang, Appl. Surf. Sci. 254, 1942 (2008)

    Article  CAS  Google Scholar 

  34. Z. Guerra-Que, G. Torres-Torres, H. Perez-Vidal, I. Cuauhtemoc-Lopez, A. Monteros, RSC Adv. 7, 3599 (2017)

    Article  CAS  Google Scholar 

  35. X. Qua, D. Xie, L. Cao, F. Du, Ceram. Int. 40, 12647 (2014)

    Article  Google Scholar 

  36. A. Baharvand, R. Ali, H. Nur, Mal. J. Fund. Appl. Sci. 12, 60 (2016)

    Article  Google Scholar 

  37. Z. Li, Y. Zhang, Y. Zhang, S. Chen, Q. Ren, Ferroelectrics 526, 152 (2018)

    Article  CAS  Google Scholar 

  38. J. Zhang, L. Li, S. Wang, T. Huang, Y. Hao, Y. Qi, RSC Adv. 6, 13991 (2016)

    Article  CAS  Google Scholar 

  39. A. Nodehi, H. Atashi, M. Mansouri, J. Dispers. Sci. Technol. 40, 766 (2019)

    Article  CAS  Google Scholar 

  40. N. Moraes, C. Azeredo, L. Bacetto, M. Silva, L. Rodrigues, Optik 165, 302 (2018)

    Article  Google Scholar 

  41. R. Borja-Urby, L. Díaz-Torres, P. Salas, E. Moctezuma, M. Vega, C. Ángeles-Chávez, MSEB. 176, 1382 (2011)

    Article  CAS  Google Scholar 

  42. T. Nanba, S. Masukawa, A. Abe, J. Uchisawa, A. Obuchi, Catal. Sci. Technol. 2, 1961 (2012)

    Article  CAS  Google Scholar 

  43. S. Padikkaparambil, B. Narayanan, Z. Yaakob, S. Viswanathan, S. Tasirin, Int. J. Photoenergy 2013, 1 (2013)

    Article  Google Scholar 

  44. N. Moraes, F. Silva, M. Silva, T. Campos, G. Thim, L. Rodrigues, Mater. Chem. Phys. 214, 95 (2018)

    Article  Google Scholar 

  45. Z. Shu, X. Jiao, D. Chen, Cryst. Eng. Comm. 15, 4288 (2013)

    Article  CAS  Google Scholar 

  46. J. Kaur, M. Sharma, O.P. Pandey, Bull. Mater. Sci. 37, 931 (2014)

    Article  CAS  Google Scholar 

  47. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Mater. Chem. Phys. 212, 325 (2018)

    Article  CAS  Google Scholar 

  48. A. Shrivastava, S.A. Tandon, R. Kumar, IJSRES 3, 0071 (2015)

    Article  CAS  Google Scholar 

  49. P. Kumawat, M. Joshi, R. Ameta, S.C. Ameta, Adv. Appl. Sci. Res. 6, 209 (2015)

    CAS  Google Scholar 

  50. S. Babar, N. Gavade, J. Park, K. Garadkar, V. Bhuse, J. Mater. Sci. Mater. Electron. 28, 8372 (2017)

    Article  CAS  Google Scholar 

  51. T. Chen, Y. Zheng, J. Lin, G. Chen, J. Am. Soc. Mass Spectrom. 19, 997 (2008)

    Article  CAS  Google Scholar 

  52. W. Rouby, A. Al-Ghamdi, M. Abdel-Wahab, A. Jilani, Bull. Mater. Sci. 41, 1 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors KMG is thankful to Shivaji University, Kolhapur for providing research grant under the Research Strengthening Scheme (File No. SU/C & U.D Section/87/1385, dated 28/03/2019) and author HMS is thankful to Shivaji University, Kolhapur for providing Golden Jubilee Research Fellowship (GJRF) in the Department of Industrial Chemistry (Ref No.SU/CUDC/UGK/GJRF/18/2018-20/635, dated 13/08/2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. S. Shirke or K. M. Garadkar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinde, H.M., Kite, S.V., Shirke, B.S. et al. Eco-friendly synthesis of Ag-ZrO2 nanocomposites for degradation of methylene blue. J Mater Sci: Mater Electron 32, 14235–14247 (2021). https://doi.org/10.1007/s10854-021-05983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05983-7

Navigation