Skip to main content
Log in

Theoretical Prediction of Structural, Magnetic and Electronic Properties of a New SiRbCa Heusler Alloy

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) within the full-potential linearized augmented plane waves (FP-LAPW) method have been employed to investigate the structural, electronic and magnetic properties of a new half-Heusler SiRbCa alloy in its three crystalline phases (α, β and γ) using two alternative approximations; GGA-PBE and mBJ-GGA-PBE that account for spin polarization. For the three phases α, β and γ of half-Heusler SiRbCa alloy, we have observed that the ferromagnetic phase is energetically beneficial relative to the magnetic phase, which is most stable for the three phases. Band structure and density of state calculations using GGA-PBE and mBJ-GGA-PBE are illustrated, the half-Heusler SiRbCa alloy behaves as a semiconductor for the majority of its spins and metal for the minority of its spins, giving a unique half-metallic nature. This approximation maintains the properties of having a direct fundamental gap of X → X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All used data is embedded in this manuscript and properly referenced where applicable.

References

  1. Fujii S, Okada M, Ishida S, Asano S (2008) High spin polarizaion of ferrimagnetic heusler-type alloys in Mn–Cr–Z system (Z = IIIb, IVb, vb elements). J Phys Soc Jpn 77:074702

    Google Scholar 

  2. Luo H, Zhang H, Zhu Z, Ma L, Xu S, Wu G, Zhu X, Jiang C, Xu H (2008) Half metallic properties for the Mn 2 Fe Z (Z = Al, Ga, Si, Ge, Sb) Heusler alloys: a first principles study. J Appl Phys 103:083908

    Google Scholar 

  3. Kresse G, Hafner J (1993) Ab initio molecular dynamics for open-shell transition metals. Phys Rev B 48:13115

    CAS  Google Scholar 

  4. Jolliffe IT (1986) Principal components in regression analysis. Principal component analysis. ed: Springer, pp 129–155

  5. De Groot R, Mueller F, Van Engen P, Buschow K (1983) New class of materials: half metallic ferromagnets. Phys Rev Lett 50:2024

    CAS  Google Scholar 

  6. Kübler J, William A, Sommers C (1983) Formation and coupling of magnetic moments in Heusler alloys. Phys Rev B 28:1745

    Google Scholar 

  7. Wurmehl S, Fecher GH, Kandpal HC, Ksenofontov V, Felser C, Lin H-J (2006) Investigation of Co 2 Fe Si: the Heusler compound with highest Curie temperature and magnetic moment. Appl Phys Lett 88:032503

    Google Scholar 

  8. Souza SD, Saxena R, Shreiner W, Zawislak F (1987) Magnetic hyperfine fields in Heusler alloys Co YZ (Y = Ti, Zr; Z = Al, Ga, Sn). Hyperfine Interact 34:431434

    Google Scholar 

  9. De Groot RA, Mueller FM, van Engen PG, Buschow KHJ (1984) Half-metallic ferromagnets and their magneto-optical properties (invited). J Appl Phys 55:2151–2154

    Google Scholar 

  10. Fang CM, De Wijs G, De Groot R (2002) Spin-polarization in half-metals. J Appl Phys 91:8340–8344

    CAS  Google Scholar 

  11. Rozale H, Amar A, Lakdja A, Moukadem A, Chahed A (2013) Half-metallicity in the half-Heusler RbSrC, RbSrSi and RbSrGe compounds. J Magn Magn Mater 336:83–87

    CAS  Google Scholar 

  12. Ahmad M, Murtaza G, Khenata R, Omran SB, Bouhemadou A (2015) Structural, elastic, electronic, magnetic and optical properties of RbSrX (C, SI, Ge) half-Heusler compounds. J Magn Magn Mater 377:204–210

    CAS  Google Scholar 

  13. Nanda B, Dasgupta I (2003) Electronic structure and magnetism in half-Heusler compounds. J Phys: Condens Matter 15:7307

    CAS  Google Scholar 

  14. Sattar MA, Rashid M, Rasool MN, Mahmood A, Hashmi MR, Ahmad S, Imran M, Hussain F (2016) Half-metallic ferromagnetism in new half-Heusler compounds: an ab initio study of CrTiX (X = Si, Ge, Sn, Pb). J Supercond Novel Magn 29:931–938

    CAS  Google Scholar 

  15. Umamaheswari R, Yogeswari M, Kalpana G (2014) Ab-initio investigation of half metallic ferromagnetism in half-Heusler compounds XYZ (X = Li, na, K and rb; Y = mg, ca, Sr and Ba; Z = B, Al and Ga). J Magn Magn Mater 350:167–173

    CAS  Google Scholar 

  16. Gao Y, Wang X (2015) d0 half-metallicity of the bulk and surface (001) of full-heusler alloy RbSrN2: a first-principle study. J Magn Magn Mater 385:394–401

    CAS  Google Scholar 

  17. Navdeep Kaur R, Sharma Y, Al-Douri V, Srivastava (2023) Alaa Farag Abd El Rehim Thermodynamic, thermoelectric and optoelectronic performances of Co2MB (M = nb, Ta) full-heusler compounds for solar cell and UV absorber applications. Mater Sci Semiconduct Process 165:107676–107687

    Google Scholar 

  18. Abed Bouadi T, Lantri S, Mesbah M, Houari I, Ameri L, Blaha M, Ameri Y, Al-Douri AF (2022) Abd El-Rehim a new semiconducting full Heusler Li2BeX (X = Si, Ge and Sn): first-principles phonon and boltzmann calculations. Phys Scr 97:105710–105719

    Google Scholar 

  19. Gaid FO, Boufadi FZ, Tayebi N, Ameri M, Mentefa A, Bellagoun L, Odeh AA, Al-Douri Y (2022) Theoretical investigation of structural, electronic, elastic, magnetic, thermodynamic and thermoelectric properties of Ru2MnNb heusler alloy: FP-LMTO method. Emergent Mater 5:1065–1073

    CAS  Google Scholar 

  20. Lamia Drici F, Belkharroubi FZ, Boufadi I, Ameri M, Ameri W, Belkilali S, Azzi F, Khelfaoui Y (2022) Al-Douri First-principles calculations of structural, elastic, electronic, and optical properties of CaYP (Y = Cu, Ag) Heusler alloys. Emergent Mater 5:1039–1054

    Google Scholar 

  21. Benaissa Nour-eddine F, Belkharroubi I, Ameri LF, Blaha B, Abdelghani D, Lamia M, Bourdim A, Tebboune MN, Belkaid M, Ameri B, Fassi S, Driz Y, Al-Douri AF (2022) Abd El-Rehim, A. Bouhemadou Effect of 5d state-based full-heusler alloys on the structural, electronic and magnetic properties of new half metallic ferromagnetism. Mater Today Commun 33:104277–104288

    Google Scholar 

  22. Beldi L, Zaoui Y, Obodo KO, Bendaoud H, Bouhafs B (2020) d0 half-metallic ferromagnetism in GeNaZ (Z = ca, Sr, and Ba) Ternary Half-Heusler alloys: an ab initio investigation. J Supercond Novel Magn 33:3121–3132

    CAS  Google Scholar 

  23. Kapil J, Pathak A, Shukla P (2022) Computational investigation of half-metallicity in d0 half-Heusler alloys GeKZ (Z = ca, Sr) using first-principles calculations. Comput Mater Sci 213:111665–111672

  24. Kapil J, Shukla P, Pathak A, (2021) A first-principles study of Ru2VGe full-Heusler alloy—pseudopotential approach. Eur Phys J Plus 136:991-999

  25. Mishra AR, Pal S (2021) Ab-initio investigation of structural, mechanical, thermodynamic, electronic, magnetic and thermoelectric properties of half-metallic d0 half-Heusler alloys LiXSi (X = Ca, Sr). J Solid State Chem 304: 122610–122619

  26. Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J, Laskowski R, Tran F, Marks LD (2018) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz,Techn. Universität Wien, Austria),

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  28. Becke AD, Johnson ER (2006) A simple effective potential for exchange. J Chem Phys 124:221101

    PubMed  Google Scholar 

  29. Tran F, Blaha P (2009) Accurate Band gaps of Semiconductors and insulators with a Semilocal exchange-correlation potential. Phys Rev Lett 102:226401

    PubMed  Google Scholar 

  30. Koller D, Tran F, Blaha P (2011) Merits and limits of the modified Becke-Johnson exchange potential. Phys Rev B 83:195134

    Google Scholar 

  31. Koller D, Tran F, Blaha P (2012) Improving the modified Becke-Johnson exchange potential. Phys Rev B 85:155109

    Google Scholar 

  32. Chen S, Gong X, Walsh A, Wei S-H (2009) Crystal and electronic band structure of Cu 2 ZnSnX 4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett 94:041903–041903

    Google Scholar 

  33. Singh DJ (2010) Structure and optical properties of high light output halide scintillators. Phys Rev B 82:155145

    Google Scholar 

  34. Singh DJ, Seo SSA, Lee HN (2010) Optical properties of ferroelectric Bi4Ti3O12. Phys Rev B 82:180103

    Google Scholar 

  35. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry vol. 18: Cornell University Press,

  36. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-Zone integrations. Phys Rev B 13:5188–5192

    Google Scholar 

  37. Murnaghan F (1944) “The compressibility of media under extreme pressures,“ Proceedings of the National Academy of Sciences, vol. 30, pp. 244–247,

  38. Meinert M (2013) Modified Becke-Johnson potential investigation of half-metallic heusler compounds, Phys. Rev. B, vol. 87, pp. 045103,

  39. Fouad A, Straus S, McDonald D, Heimer F, Xia Q (2023) Optical properties of GaX (X = P, as, sb) under hydrostatic pressure, Experimental and Theoretical NANOTECHNOLOGY, vol. 7, pp. 283–290,

  40. Kojal N, Javec S (2023) Structuraland thermal properties of H6Ta2O17, Experimental and Theoretical NANOTECHNOLOGY, vol. 7, pp. 309–316,

  41. Raman V, Rajan A (2023) Thermodynamic properties of MgFeH3 alloy, Experimental and Theoretical NANOTECHNOLOGY, vol. 7, pp. 381–392,

  42. Radiman S, Rusop M (2023) Investigation of structural and optical properties of In-doped AlSb nanostructures, Experimental and Theoretical NANOTECHNOLOGY, vol. 7, pp. 49–76,

  43. Oula Jabbar AH, Reshak (2023) Structurlectronic, and optoelectronic properties of XYZ2 (X = zn,cd; Y = Si,Sn;Z = pnicogens) Chalcopyrite compounds: first-principles calculations, Experimental and Theoretical NANOTECHNOLOGY, vol. 7, pp. 97–110,

  44. Liu J, Yang R (2023) Structural, dynamical, thermodynamic properties of CdYF3 perovskite, Experimental and Theoretical NANOTECHNOLOGY, vol. 7, pp. 111–126,

  45. Sahnoun R (2023) Gap bowing of in Pb1-xCaxS, Pb1-xCaxSe and Pb1-xCaxTe alloys, Exp Experimental and Theoretical NANOTECHNOLOGY, vol. 7, pp. 149–158,

  46. Samia L, Belkharroubi F, Ibrahim A, Lamia BF, Saim A, Maizia A, Mohammed A, Al-Douri Y (2022) Investigation of structural, elastic, electronic, and magnetic proprieties for X2LuSb (X = mn and ir) full-heusler alloys. Emergent Mater 5:537–551

    CAS  Google Scholar 

  47. Benaddi F, Belkharroubi F, Ramdani N, Ameri M, Haouari S, Ameri I, Drici L, Azzi S, Al-Douri Y (2021) Electronic and magnetic investigation of half-metallic ferrimagnetic full-heusler Mn2IrGe. Emergent Mater 4:1745–1760

    CAS  Google Scholar 

  48. Ayad M, Belkharroubi F, Boufadi F, Khorsi M, Zoubir M, Ameri M, Ameri I, Al-Douri Y, Bidai K, Bensaid D (2020) First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co 2 TaGa. Indian J Phys 94:767–777

    CAS  Google Scholar 

  49. Fadila B, Ameri M, Bensaid D, Noureddine M, Ameri I, Mesbah S, Al-Douri Y (2018) Structural, magnetic, electronic and mechanical properties of full-heusler alloys Co2YAl (Y = fe, Ti): first principles calculations with different exchange-correlation potentials. J Magn Magn Mater 448:208–220

    CAS  Google Scholar 

  50. Zoubir MK, Fadila B, Keltoum B, Ibrahim A, Farah BL, Al-Douri Y, Mohammed A (2021) Structural, electronic and thermodynamic investigation of Ag2GdSi, Ag2GdSn and Ag2Gd pb heusler alloys: first-principles calculations. Mater Test 63:537–542

    CAS  Google Scholar 

  51. Saim A, Belkharroubi F, Boufadi F, Ameri I, Blaha L, Tebboune A, Belkaid M, Belkilali W, Ameri M, Al-Douri Y (2022) Investigation of the structural, elastic, electronic, and optical properties of half-Heusler CaMgZ (Z = C, Si, Ge, Sn, Pb) compounds. J Electron Mater 51:4014–4028

    CAS  Google Scholar 

  52. Semari F, Dahmane F, Baki N, Al-Douri Y, Akbudak S, Uğur G, Uğur Ş, Bouhemadou A, Khenata R, Voon CH (2018) First-principle calculations of structural, electronic and magnetic investigations of Mn2RuGe1-xSnx quaternary Heusler alloys. Chin J Phys 56:567–573

    CAS  Google Scholar 

  53. Ameri M, Belkharroubi F, Ameri I, Al-Douri Y, Bouhafs B, Boufadi FZ, Touia A, Boudia K, Mired F et al (2014) “Ab initio calculations of structurlastic, and thermodynamic properties of HoX (X = N, O, S and Se),“ Materials science in semiconductor processing, vol. 26, pp. 205–217,

  54. Fahad J (2022) Energy band estimation of Nitride semiconductors. Experimental and Theoretical NANOTECHNOLOGY 6:443–445

    Google Scholar 

  55. Jandow NN, Khan MM (2022) Combined experimental and theoretical investigation of electronic properties of nitrides. Experimental and Theoretical NANOTECHNOLOGY 6:511–522

    Google Scholar 

  56. Rabia Hani F, Ahmad (2022) Stibniteat modified Becke-Johnson exchange potential, Experimental and Theoretical NANOTECHNOLOGY, vol. 6, pp. 367–386,

  57. Ameri M, Khenata R (2022) Electronic and elastic properties of BN, AlN and GaN, Experimental and Theoretical NANOTECHNOLOGY, vol. 6, pp. 485–490,

  58. Guerrero A, Gulseren O, Gross S (2022) Structural properties of group-III nitrides. Experimental and Theoretical NANOTECHNOLOGY 6:497–504

    Google Scholar 

  59. Baroni S, Ekinci H (2022) Optical and structural properties of III-nitrides compounds. Experimental and Theoretical NANOTECHNOLOGY 6:491–496

    Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Al-Douri.

Ethics declarations

Ethical approval

We confirm that this work is original and has not been neither published elsewhere nor currently under consideration for publication elsewhere and has ethical issues and no conflict of interest.

Competing interest

We have no financial competing interests. We just want to explore our research productivity through this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadjia, T., Beldi, L., Mohammed, A. et al. Theoretical Prediction of Structural, Magnetic and Electronic Properties of a New SiRbCa Heusler Alloy. Chemistry Africa 7, 1619–1628 (2024). https://doi.org/10.1007/s42250-023-00836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00836-8

Keywords

Navigation