Skip to main content
Log in

Physical and Chemical Characterisations, Optical Properties and Dielectric Studies of a New Organic–Inorganic Material: bis(4-amino-2-chloropyridinium) Tetrachloromercurate (II) Monohydrate

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The synthesis, structural chemistry, spectroscopic studies, optical absorption and photoluminescence, density functional theory (DFT), thermal study (TGA–DSC) and dielectric measurement of the new hybrid bis(4-amino-2-chloropyridinium) tetrachloromercurate (II) monohydrate, (C5H6N2Cl)2[HgCl4]•H2O, (abbreviated (CAP)2[HgCl4]•H2O), were described and discussed in this research paper. The result of the crystallographic study at room temperature revealed that it crystallises in the centrosymmetric triclinic system. The 13C NMR study demonstrated the presence of ten resonance signals, proving consistency with the X-ray structure, which corroborates the purity of the produced mixture. With a zero-dimensional lattice, this structure is stabilized through the presence of classical and non-classical C–H…Cl hydrogen bonds, and offset as well as π–π stacking interactions between identical antiparallel (aromatic-aromatic) CAPs. These interactions were further investigated through the use of Hirshfeld surface analysis. The theoretical results displayed a good convergence with the experimental results, using the time-dependent DFT (TD-DFT) approach. Moreover, the simulated spectrum satisfactorily coincided with the experimental UV–visible spectrum. Photoluminescence (PL) was characterized by two bands at 346 and 381 nm. The thermal properties were confirmed by TGA–DSC analysis. The studies conducted on electronic and dielectric properties unveiled that the conduction mechanism in this new salt was due to an H+ proton hopping process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The data set generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Šimon T, Czakó A (2014) Influence of long-term application of organic and inorganic fertilizers on soil properties. J Plant Soil Environ 60(7):314–319. https://doi.org/10.17221/264/2014-PSE

    Article  Google Scholar 

  2. Maughan AE, Kurzman JA, Neilson JR (2015) Hybrid inorganic–organic materials with an optoelectronically active aromatic cation:(C7H7) 2SnI6 and C7H7PbI3. J Inorganic Chem (1): 370–378. https://doi.org/10.1021/ic5025795.

  3. Mahmood Q, Hassan M, Ahmad SHA, Bhamu KC, Mahmood A, Ramay SM (2019) Study of electronic, magnetic and thermoelectric properties of AV2O4 (A= Zn, Cd, Hg) by using DFT approach. J Phys Chem Solids 128:283–290. https://doi.org/10.1016/j.jpcs.2017.08.007

    Article  CAS  Google Scholar 

  4. Thomas T, Hartmann B, Lunkenheimer P, Schubert H, Schlueter JA, Müller J (2019) Low-Frequency Charge carrier dynamics in ferroelectric κ-(BEDT-TTF) 2X–A Comparative Study of X= Cu [N (CN)2] Cl and X= Hg (SCN) 2Cl. J Phys Status Solidi (b). 256(9):1800746. https://doi.org/10.1002/pssb.201800746

    Article  CAS  Google Scholar 

  5. Aziz AAA, Elantabli FM, Moustafa H, El-Medani SM (2017) Spectroscopic, DNA binding ability, biological activity, DFT calculations and non linear optical properties (NLO) of novel Co (II), Cu (II), Zn (II), Cd (II) and Hg (II) complexes with ONS Schiff base. J Mol Struct 1141:563–576. https://doi.org/10.1016/j.molstruc.2017.03.081

    Article  CAS  Google Scholar 

  6. Sakka A, Mhadhbi N, Hamdi B, Ahmed AB, Tozri A, Nasr S, Naïli H (2023) Structure/function relationships of a new stannate (IV) complex based on 5, 7-dichloro-8-hydroxyquinolinium, accomplished with DFT calculations. J Mol Struct 1277:134811. https://doi.org/10.1016/j.molstruc.2022.134811

    Article  CAS  Google Scholar 

  7. Jellali A, Elleuch S, Hamdi B, Zouari R (2019) Experimental and theoretical investigations of the molecular structure, the spectroscopic properties and TD-DFT analysis of a new semiconductor hybrid based iron (III). J Saudi Chem Soc 23(5):600–611. https://doi.org/10.1016/j.jscs.2018.10.006

    Article  CAS  Google Scholar 

  8. Hamdi B, Zouari R, Ben Salah A (2018) Preparation, molecular structure, thermal properties, electrical conductivity analysis and dielectric relaxation of a new hybrid compound (NH 2C5H3 ClNH)2 ZnBr 4· H 2 O. J Chem Papers. 72:2795–2811. https://doi.org/10.1007/s11696-018-0521-8

    Article  CAS  Google Scholar 

  9. Jellali A, Hamdi B, Salah N, Zouari R (2018) Experimental, theoretical, characterization and TD-DFT analysis of a complex [Cu (CAP) 2 Cl2]. J Inorg Organomet Polym Mater 28:1636–1647. https://doi.org/10.1007/s10904-018-0822-y

    Article  CAS  Google Scholar 

  10. Egger DA, Kronik L (2014) Role of dispersive interactions in determining structural properties of organic–inorganic halide perovskites: insights from first-principles calculations. J Phys Chem Lett 5(15):2728–2733. https://doi.org/10.1021/jz5012934

    Article  CAS  PubMed  Google Scholar 

  11. Soroceanu M, Barzic AI, Stoica I, Sacarescu L, Ioanid EG, Harabagiu V (2017) Plasma effect on polyhydrosilane/metal interfacial adhesion/cohesion interactions. Int J Adhes Adhes 74:131–136. https://doi.org/10.1016/j.ijadhadh.2017.01.00

    Article  CAS  Google Scholar 

  12. Utschig LM, Silver SC, Mulfort KL, Tiede DM (2011) Nature-driven photochemistry for catalytic solar hydrogen production: a photosystem I–transition metal catalyst hybrid. J Am Chem Soc 133(41):16334–16337. https://doi.org/10.1021/ja206012r

    Article  CAS  PubMed  Google Scholar 

  13. Shukla D, Adiga SP, Ahearn WG, Dinnocenzo JP, Farid S (2013) Chain-amplified photochemical fragmentation of N-alkoxypyridinium salts: proposed reaction of alkoxyl radicals with pyridine bases to give pyridinyl radicals. J Org Chem 78(5):1955–1964. https://doi.org/10.1021/jo301975j

    Article  CAS  PubMed  Google Scholar 

  14. Karâa N, Ben Ahmed A, Hamdi B (2023) New semiconductor halocadmate [CdnXm](2n–m) crystal structure, molecular conformation and theoretical investigations. J Solid State Chem 322:123954. https://doi.org/10.1016/j.jssc.2023.123954

    Article  CAS  Google Scholar 

  15. Yan B, Wang QM (2007) Molecular fabrication and photoluminescence of novel terbium co-polymer using 4-vinyl pyridine as the efficient second ligand. J Opt Mater 30(4):617–621. https://doi.org/10.1016/j.optmat.2007.01.015

    Article  CAS  Google Scholar 

  16. Smith MD, Watson BL, Dauskardt RH, Karunadasa HI (2017) Broadband emission with a massive stokes shift from sulfonium Pb–Br hybrids. J Chem Mater 29(17):7083–7087. https://doi.org/10.1021/acs.chemmater.7b02594

    Article  CAS  Google Scholar 

  17. Vidyasagar CC, Muñoz Flores BM, Jiménez Pérez VM (2018) Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. J Nano-Micro Lett 10:1–34. https://doi.org/10.1007/s40820-018-0221-5

    Article  CAS  Google Scholar 

  18. Aruta C, Licci F, Zappettini A, Bolzoni F, Rastelli F, Ferro P, Besagni TJAP (2005) A. Journal of Growth and optical, magnetic and transport properties of (C 4 H 9 NH 3) 2 MCl 4 organic-inorganic hybrid films (M= Cu, Sn). J Appl Phys A. 81:963–968. https://doi.org/10.1007/s00339-004-3102-3

    Article  CAS  Google Scholar 

  19. Karaa N, Hamdi B, Ben Salah A, Zouari R (2012) Synthesis, infra-red, MAS-NMR characterization, structural study and electrical properties of the new compound [C5H6ClN2] 2Cd3Cl8. J Mol Struct 1013:168–176. https://doi.org/10.1016/j.molstruc.2011.12.053

    Article  CAS  Google Scholar 

  20. Saleh TA (2015) Isotherm, kinetic, and thermodynamic studies on Hg (II) adsorption from aqueous solution by silica-multiwall carbon nanotubes. J Environ Sci Pollut Res 22:16721–16731. https://doi.org/10.1007/s11356-015-4866-z

    Article  CAS  Google Scholar 

  21. Temoçin Z, Yiğitoğlu M (2010) Studies on selective uptake behavior of Hg (II) and Pb (II) by functionalized poly (ethylene terephthalate) fiber with 4-vinyl pyridine/2-hydroxyethylmethacrylate. J Water Air Soil Pollut 210:463–472. https://doi.org/10.1007/s11270-009-0271-x

    Article  CAS  Google Scholar 

  22. Argent SP, Adams H, Riis-Johannessen T, Jeffery JC, Harding LP, Clegg W, Ward MD (2006) Complexes of Ag (I), Hg (I) and Hg (II) with multidentate pyrazolyl-pyridine ligands: from mononuclear complexes to coordination polymers via helicates, a mesocate, a cage and a catenate. J Dalton Trans 42:4996–5013. https://doi.org/10.1039/B607541J

    Article  Google Scholar 

  23. McAuliffe, C. A. (Ed.). (2016). The chemistry of mercury. Springer. ISBN 1349024899, 9781349024896

  24. Elwej R, Nasri S, Hlel F (2016) Impedance spectroscopic investigation on phase transition and electrical conduction mechanism of the new inorganic-organic complex: (C6H9N2)2HgCl4 (I), (C6H9N2)2(Hg0.75Cd0.25)Cl4 (II) and (C6H9N2)2(Hg0.12Zn0.88)Cl4 (III). J Alloys Compounds 684:389–396. https://doi.org/10.1016/j.jallcom.2016.05.172

    Article  CAS  Google Scholar 

  25. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Crystallogr 32:837–838. https://doi.org/10.1107/S0021889899006020

    Article  CAS  Google Scholar 

  26. Farrugia LJ (1997) It ORTEP-3 for windows—a version of it ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr 30:565–565. https://doi.org/10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  27. K. Brandenburg (1998) Diamond Version 2.0. Impact Gbr, Bonn.

  28. Allen FH, Davies JE, Galloy JJ, Johnson O, Kennard O, Macrae CF, Mitchell EM, Mitchell GF, Smith JM, Watson DG (1991) The development of versions 3 and 4 of the Cambridge Structural Database System. J Chem Inform Comput Sci 31:187–204. https://doi.org/10.1021/ci00002a004

    Article  CAS  Google Scholar 

  29. McKinnon, J.J, Mitchell. A. S, Spackman. M. A. Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals. Journal of Chemistry—A European. 4 (1998) 2136. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11%3C2136::AID-CHEM2136%3E3.0.CO;2-G

  30. Seth SK (2014) Discrete cubic water cluster: an unusual building block of 3D supramolecular network. J Inorganic Chem Commun 43:60–63. https://doi.org/10.1016/j.inoche.2014.02.014

  31. Seth SK (2014) Structural elucidation and contributio n of intermolecular interactions in O-hydroxy acyl aromatics: Insights from X-ray and Hirshfeld surface analysis. J Mol Struct 1064:70–75. https://doi.org/10.1016/j.molstruc.2014.01.068

    Article  CAS  Google Scholar 

  32. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. J Chem Commun 37:3814–3816. https://doi.org/10.1039/B704980C

    Article  Google Scholar 

  33. Spackman MAS, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. J Cryst Eng Comm 4:378–392. https://doi.org/10.1039/b203191b

    Article  CAS  Google Scholar 

  34. Spackman MA, Byrom PG (1997) A novel definition of a molecule in a crystal. J Phys Chem Lett 267:215–220. https://doi.org/10.1016/S0009-2614(97)00100-0

    Article  CAS  Google Scholar 

  35. Lee C, Yang WT, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. J Phys Rev B. 37:785–788. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  36. Leopold N, Szabó L, Pîrnău A, Aluaş M, Leopold LF, Chiş V, Cozar O (2009) Raman spectroscopic and DFT theoretical study of 4-(2-pyridylazo) resorcinol and its complexes with zinc(II) and copper(II). J Mol Struct 919:94–99. https://doi.org/10.1016/j.molstruc.2008.08.022

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09, Revision A.1, GAUSSIAN, Inc, Wallingford CT

  38. National Institute of Standards and Technology (NIST), Computational chemistry comparison and benchmark database: precomputed vibrational scaling factors. http://cccbdb.nist.gov/vibscalejust.asp.

  39. Dennington R, Keith T, Millam J (2009) GaussView, Version 5, Semichem Inc, Shawnee; Mission, KS

  40. Fleming I (1976) Frontier orbitals and organic chemical reactions. John Wiley and Sons, New York

    Google Scholar 

  41. Runge E, Gross EKU (1984) Journal. Density-functional theory for time-dependent systems. Phys Rev Lett. 52 (1984) 997–1000. https://doi.org/10.1103/PhysRevLett.52.997.

  42. Karâa N, Hamdi B, Oueslati A, Salah AB, Zouari R (2010) Preparation, infra-red, MAS-NMR and structural characterization of a new copper based inorganic organic hybrid compound: [C5H6N2Cl]2CuCl4. J Inorg Organomet Polym Mater 20:746–754. https://doi.org/10.1007/s10904-010-9409y

    Article  Google Scholar 

  43. Karâa N, Hamdi B, Ben Salah A, Zouari R (2013) Synthesis, Infra-red, CP/MAS-NMR characterization, structural study and electrical properties of the bis(4-amino-2-chloropyridinium)tetrachlorozincate(II) monohydrate. J Mol Struct 1049:48–58. https://doi.org/10.1016/j.molstruc.2013.06.003

    Article  CAS  Google Scholar 

  44. Ben Debabis R, Amamou W, Chniba-Boudjada N, Zouari F (2019) Synthesis, crystal structure, and vibrational and magnetic properties of Co (II) and Hg(II) complexes with an 8-hydroxyquinoline unit. J Phys Chem Solids 124:296–304. https://doi.org/10.1016/j.jpcs.2018.09.038

    Article  CAS  Google Scholar 

  45. Rigane I, Walha S, Ben Salah A (2016) Hydrogen bonding in thiobenzamide synthon and its Cadmium complex: Crystal structure and Hirshfeld analysis. J Chem Sci 9:1395–1404. https://doi.org/10.1007/s12039-016-1133-x

    Article  CAS  Google Scholar 

  46. Massiot D, Fayon F, Capron M, King I, Lecalve S, Alonso B, Durand JO, Bujoli B, Gan Z, Hoatson G (2002) Modeling one- and two-dimensional solid-state NMR spectra. J Chem 40:70–76. https://doi.org/10.1002/mrc.984

    Article  CAS  Google Scholar 

  47. Estévez-Hernández O, Duque J, Rodríguez-Hernández J, Reguera E (2015) J Polyhedron 97:148–156. https://doi.org/10.1016/j.poly.2015.05.028

    Article  CAS  Google Scholar 

  48. Ayari C, Mrad MH, Alotaibi AA, Precisvalle N, Othmani A, Ben Nasr C (2023) Investigation on crystal structure, spectroscopic characterization, thermal analysis, conductivity study and antioxidant activity of a novel compound containing cluster entities (C7H10N)2·(HgCl2)2·(Hg2Cl6). J Cluster Sci. https://doi.org/10.1007/s10876-023-02459-y

    Article  Google Scholar 

  49. Loseva OV, Rodina TA, Antzutkin ON, Ivanov AV (2018) Chemisorption Activity of Mercury (II) Cyclopentamethylenedithiocarbamate: Synthesis, Structure, and Thermal Behavior of the [Hg 2 {S2CN (CH2)5}4] and [Au3 {S2CN(CH2)5}6][Au {S2CN(CH2)5}2][Hg2Cl6]2 Complexes. Russian J General Chem 88:2540–2549. https://doi.org/10.1134/S1070363218120149

    Article  CAS  Google Scholar 

  50. Hasabeldaim EHH, Swart HC, Kroon RE (2023) Luminescence and stability of Tb doped CaF2 nanoparticles. J RSC Adv 13:5353–5366. https://doi.org/10.1039/D2RA07897J

    Article  CAS  Google Scholar 

  51. Okulik N, Jubert AH (2005) Theoretical study on the structure and reactive sites of non-steroidal anti-inflammatory drugs. J Mol Struct (Thoechem) 682:55–62. https://doi.org/10.1016/j.theochem.2004.04.069

    Article  CAS  Google Scholar 

  52. Mancuso JL, Mroz AM, Le KN, Hendon CH (2020) Electronic structure modeling of metal–organic frame works. J Chem Rev 120(16):8641–8715. https://doi.org/10.1021/acs.chemrev.0c00148

    Article  CAS  Google Scholar 

  53. Mahamoud H, Louati B, Hlel F, Guidara K (2011) Impedance spectroscopy study of Pb2P2O7 compound. J Ionics 17:223–228. https://doi.org/10.1007/s11581-011-0540-8

    Article  CAS  Google Scholar 

  54. Chowdari BVR, Gopalakrishnan R (1987) AC conductivity analysis of glassy silver iodomolybdate system. J Solid State Ionics 23:225–233. https://doi.org/10.1016/0167-2738(87)90055-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the members of units of common services, at the University of Sfax for their assistance in terms of the measurements for X-ray diffraction and Raman. The authors are equally grateful to the members of Laboratory of Applied Physic, Department of Physics, Faculty of Sciences of Sfax, University of Sfax—Tunisia for their valuable assistance in the Photoluminescence (PL) spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najla Karâa.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (CIF 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jellali, A., Karâa, N., Ghalla, H. et al. Physical and Chemical Characterisations, Optical Properties and Dielectric Studies of a New Organic–Inorganic Material: bis(4-amino-2-chloropyridinium) Tetrachloromercurate (II) Monohydrate. Chemistry Africa 7, 1649–1665 (2024). https://doi.org/10.1007/s42250-023-00813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00813-1

Keywords

Navigation