Skip to main content
Log in

The Removal Efficiency of Cadmium (Cd2+) and Lead (Pb2+) from Aqueous Solution by Graphene Oxide (GO) and Magnetic Graphene Oxide (α-Fe2O3/GO)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this study, the modified Hummer method was used to prepare graphene oxide (GO) and magnetic graphene oxide (α-Fe2O3/GO). The as-obtained Go and α-Fe2O3/GO were characterized using Fourier Transform Infrared, Raman spectroscopy, X-ray diffraction, and Brunauer Emmett Teller. The adsorptive capacity of these materials towards cadmium (Cd2+) and lead (Pb2+) has been studied. An adsorption process with regeneration was carried out, such as equilibrium time, effect of the initial concentration of Cd2+ and Pb2+, effect of the amount of the GO, and α-Fe2O3/GO and pH effect. The adsorption of an aqueous solution of Cd2+ and Pb2+ with an initial concentration of 10–3 M of the two heavy metals onto 0.1 g of the prepared materials reached an equilibrium time in 2 h with an adsorption rate of more than 90% for both metals. The fine morphology of the adsorbents facilitated the rapid diffusion of the metals studied in the pores, which increased the kinetic. The kinetics can be described by the pseudo-second-order model with R2 = 0.993 and R2 = 0.997 for Cd2+ and Pb2+, respectively. The thermodynamic study reveals that the adsorption process is spontaneous, exothermic, and random as temperature increases. The adsorption mechanism included physical adsorption, ion exchange and possibly surface complexation. According to the results obtained and the ease of obtaining α-Fe2O3/GO, we can say that it is a promising adsorbent for Cd2+ and Pb2+. The magnetic nanoparticle α-Fe2O3/GO can be recovered using a magnet. As a result, it is a reusable and recyclable adsorbent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rabia A, Yaseen M, Mukhtar A, Klemeš JJ, Saqib S, Ullah S, Al-Sehemi AG et al (2020) Lead and cadmium removal from wastewater using eco-friendly biochar adsorbent derived from rice husk, wheat straw, and corncob. Clean Eng Technol 1:100006. https://doi.org/10.1016/j.clet.2020.100006

    Article  Google Scholar 

  2. Bhatluri KK, Manna MS, Ghoshal AK, Saha P (2017) Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition. Electrochim Acta 229:1–7. https://doi.org/10.1016/j.electacta.2017.01.090

    Article  CAS  Google Scholar 

  3. Cheng S, Zhao S, Guo H, Xing B, Liu Y, Zhang C, Ma M (2022) High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. Bioresour Technol 343:126081. https://doi.org/10.1016/j.biortech.2021.126081

    Article  CAS  PubMed  Google Scholar 

  4. Cui N, Laiye Qu, Gang Wu (2022) Heavy metal accumulation characteristics and physiological response of Sabina chinensis and Platycladus orientalis to atmospheric pollution. J Environ Sci 112:192–201. https://doi.org/10.1016/j.jes.2021.05.013

    Article  CAS  Google Scholar 

  5. Ding C, Xie A, Yan Z, Li X, Zhang H, Tang N, Wang X (2021) Treatment of water-based ink wastewater by a novel magnetic flocculant of boron-containing polysilicic acid ferric and zinc sulfate. J Water Process Eng 40:101899. https://doi.org/10.1016/j.jwpe.2020.101899

    Article  Google Scholar 

  6. Chyad TF, Al-Hamadani RFC, Hammood ZA, Ali GA (2021) Removal of Zinc(II) ions from industrial wastewater by adsorption on to activated carbon produced from pine cone. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.07.016

    Article  Google Scholar 

  7. Huy DH, Seelen E, Liem-Nguyen V (2020) Removal mechanisms of cadmium and lead ions in contaminated water by stainless steel slag obtained from scrap metal recycling. J Water Process Eng 36:101369. https://doi.org/10.1016/j.jwpe.2020.101369

    Article  Google Scholar 

  8. Li T, Yang T, Yu Z, Xu G, Han Q, Luo G, Du J, Guan Y, Guo C (2021) Trivalent chromium removal from tannery wastewater with low cost bare magnetic Fe3O4 nanoparticles. Chem Eng Process Process Intensif 169:108611. https://doi.org/10.1016/j.cep.2021.108611

    Article  CAS  Google Scholar 

  9. Li X-D, Xin L, Rong W-T, Liu X-Y, Deng W-A, Qin Y-C, Li X-L (2021) Effect of heavy metals pollution on the composition and diversity of the intestinal microbial community of a pygmy grasshopper (Eucriotettix oculatus). Ecotoxicol Environ Saf 223:112582. https://doi.org/10.1016/j.ecoenv.2021.112582

    Article  CAS  PubMed  Google Scholar 

  10. Liu T, Lawluvy Y, Shi Y, Ighalo JO, He Y, Zhang Y, Yap P-S (2021) Adsorption of cadmium and lead from aqueous solution using modified biochar: a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106502

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ma M, Du Y, Bao S, Li J, Wei H, Lv Y, Song X, Zhang T, Du D (2020) Removal of cadmium and lead from aqueous solutions by thermal activated electrolytic manganese residues. Sci Total Environ 748:141490. https://doi.org/10.1016/j.scitotenv.2020.141490

    Article  CAS  PubMed  Google Scholar 

  12. Marichamy MK, Kumaraguru A, Jonna N (2021) Particle size distribution modeling and kinetic study for coagulation treatment of tannery industry wastewater at response surface optimized condition. J Clean Prod 297:126657. https://doi.org/10.1016/j.jclepro.2021.126657

    Article  CAS  Google Scholar 

  13. Masoumi H, Ghaemi A, Gilani HG (2021) Elimination of lead from multi-component lead–nickel–cadmium solution using hyper-cross-linked polystyrene: experimental & RSM modeling. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2021.106579

    Article  Google Scholar 

  14. Nair K, Manu SB, Azhoni A (2021) Sustainable treatment of paint industry wastewater: current techniques and challenges. J Environ Manag 296:113105. https://doi.org/10.1016/j.jenvman.2021.113105

    Article  CAS  Google Scholar 

  15. Radelyuk I, Tussupova K, Klemeš JJ, Persson KM (2021) Oil refinery and water pollution in the context of sustainable development: developing and developed countries. J Clean Prod 302:126987. https://doi.org/10.1016/j.jclepro.2021.126987

    Article  CAS  Google Scholar 

  16. Rezania S, Mojiri A, Park J, Nawrot N, Wojciechowska E, Marraiki N, Zaghloul NSS (2022) Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide. Environ Res 204:111959. https://doi.org/10.1016/j.envres.2021.111959

    Article  CAS  PubMed  Google Scholar 

  17. Rha S, Jo HY (2021) Data describing characteristics of waste foundry dust (WFD), sorbent obtained before and after batch sorption tests using As(III) and Cr(VI) aqueous solutions. Data Brief 35:106921. https://doi.org/10.1016/j.dib.2021.106921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sharma MD, Krupadam RJ (2021) Adsorption-desorption dynamics of synthetic and naturally weathered microfibers with toxic heavy metals and their ecological risk in an estuarine ecosystem. Environ Res. https://doi.org/10.1016/j.envres.2021.112198

    Article  PubMed  Google Scholar 

  19. Stando G, Hannula P-M, Kumanek B, Lundström M, Janas D (2021) Copper recovery from industrial wastewater—synergistic electrodeposition onto nanocarbon materials. Water Resour Ind 26:100156. https://doi.org/10.1016/j.wri.2021.100156

    Article  CAS  Google Scholar 

  20. Tao X, Hu X, Wen Z, Ming Y, Li J, Liu Y, Chen R (2022) Highly efficient Cr(VI) removal from industrial electroplating wastewater over Bi2S3 nanostructures prepared by dual sulfur-precursors: insights on the promotion effect of sulfate ions. J Hazard Mater 424:127423. https://doi.org/10.1016/j.jhazmat.2021.127423

    Article  CAS  PubMed  Google Scholar 

  21. Tran TK, Kim N, Le QC, Nguyen MT, Leu HJ, Thi KNV (2021) Electrochemical preparation and characterization of polyaniline enhanced electrodes: an application for the removal of cadmium metals in industrial wastewater. Mater Chem Phys 261:124221. https://doi.org/10.1016/j.matchemphys.2021.124221

    Article  CAS  Google Scholar 

  22. Uugwanga MN, Kgabi NA (2021) Heavy metal pollution index of surface and groundwater from around an abandoned mine site, Klein Aub. Phys Chem Earth Parts A/B/C. https://doi.org/10.1016/j.pce.2021.103067

    Article  Google Scholar 

  23. Vogel N, Murawski A, Schmied-Tobies MIH, Rucic E, Doyle U, Kämpfe A, Höra C et al (2021) Lead, cadmium, mercury, and chromium in urine and blood of children and adolescents in Germany—human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Int J Hyg Environ Health 237:113822. https://doi.org/10.1016/j.ijheh.2021.113822

    Article  CAS  PubMed  Google Scholar 

  24. Wang C, Li T, Yu G, Deng S (2021) Removal of low concentrations of nickel ions in electroplating wastewater using capacitive deionization technology. Chemosphere 284:131341. https://doi.org/10.1016/j.chemosphere.2021.131341

    Article  CAS  PubMed  Google Scholar 

  25. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH (2021) Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov 22:101504. https://doi.org/10.1016/j.eti.2021.101504

    Article  CAS  Google Scholar 

  26. Zhou H, Zhao X, Kumar K, Kunetz T, Zhang Y, Gross M, Wen Z (2021) Removing high concentration of nickel(II) ions from synthetic wastewater by an indigenous microalgae consortium with a revolving Algal Biofilm (RAB) system. Algal Res 59:102464. https://doi.org/10.1016/j.algal.2021.102464

    Article  Google Scholar 

  27. Berbar Y, Hammache ZE, Bensaadi S, Soukeur R, Amara M, Van der Bruggen B (2019) Effect of functionalized silica nanoparticles on sulfonated polyethersulfone ion exchange membrane for removal of lead and cadmium ions from aqueous solutions. J Water Process Eng 32:100953. https://doi.org/10.1016/j.jwpe.2019.100953

    Article  Google Scholar 

  28. D Trishitman, A Cassano, A Basile, NK Rastogi (2020) 9—reverse osmosis for industrial wastewater treatment. In: Basile A, Cassano A, Rastogi NK (eds) Current trends and future developments on (bio-) membranes. Elsevier, pp 207–28. https://doi.org/10.1016/B978-0-12-816777-9.00009-5

  29. Atanassova M (2021) Solvent extraction chemistry in ionic liquids: an overview of f-ions. J Mol Liq 343:117530. https://doi.org/10.1016/j.molliq.2021.117530

    Article  CAS  Google Scholar 

  30. Xiong C, Li Y, Wang G, Fang L, Zhou S, Yao C, Chen Q et al (2015) Selective removal of Hg(II) with polyacrylonitrile-2-amino-1,3,4-thiadiazole chelating resin: batch and column study. Chem Eng J 259:257–265. https://doi.org/10.1016/j.cej.2014.07.114

    Article  CAS  Google Scholar 

  31. Sun Y, Lan J, Du Y, Li Z, Liao X, Du D, Ye H, Zhang TC, Chen S (2020) Efficient removal of heavy metals by synergistic actions of microorganisms and waste molasses. Bioresour Technol 302:122797. https://doi.org/10.1016/j.biortech.2020.122797

    Article  CAS  PubMed  Google Scholar 

  32. Kessler E (1978) The role of parenteral hyperalimentation in the management of the burnt patient. Proc Mine Med Off Assoc S A 58(426):1–9

    CAS  Google Scholar 

  33. Ferrucci A, Vocciante M (2021) Improved management of water resources in process industry by accounting for fluctuations of water content in feed streams and products. J Water Process Eng 39:101870. https://doi.org/10.1016/j.jwpe.2020.101870

    Article  Google Scholar 

  34. Yang S-S, Chen Y-d, Zhang Ye, Zhou H-M, Ji X-Y, He L, Xing D-F, Ren N-Q, Ho S-H, Wei-Min Wu (2019) A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal. Environ Pollut 252:1142–1153. https://doi.org/10.1016/j.envpol.2019.06.028

    Article  CAS  PubMed  Google Scholar 

  35. Kadari M, Makhlouf M (2021) Graphene oxide (GO): synthesis, characterization and application to the retention of mercuric ions in aqueous solutions. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.09.426

    Article  Google Scholar 

  36. Khan et al., Graphene oxide/PVC composite papers functionalized with p-phenylenediamine as high-performance sorbent for the removal of heavy metal ions

  37. Chaabane L, Beyou E, Baouab MHV (2021) Preparation of a novel zwitterionic graphene oxide-based adsorbent to remove of heavy metal ions from water: modeling and comparative studies. Adv Powder Technol 32(7):2502–2516. https://doi.org/10.1016/j.apt.2021.05.011

    Article  CAS  Google Scholar 

  38. Jalali K, Pajootan E, Bahrami H (2019) Elimination of hazardous methylene blue from contaminated solutions by electrochemically magnetized graphene oxide as a recyclable adsorbent. Adv Powder Technol 30(10):2352–2362. https://doi.org/10.1016/j.apt.2019.07.018

    Article  CAS  Google Scholar 

  39. Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265. https://doi.org/10.1016/j.jwpe.2015.07.001

    Article  Google Scholar 

  40. Xie Y, Qian D, Dongliang Wu, Ma X (2011) Magnetic halloysite nanotubes/iron oxide composites for the adsorption of dyes. Chem Eng J 168(2):959–963. https://doi.org/10.1016/j.cej.2011.02.031

    Article  CAS  Google Scholar 

  41. Mak S-Y, Chen D-H (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigm 61(1):93–98. https://doi.org/10.1016/j.dyepig.2003.10.008

    Article  CAS  Google Scholar 

  42. Rashidi NH, Ibrahim WAW, Kamboh MA, Sanagi MM (2017) New magnetic graphene-based inorganic–organic sol-gel hybrid nanocomposite for simultaneous analysis of polar and non-polar organophosphorus pesticides from water samples using solid-phase extraction. Chemosphere 166:21–30. https://doi.org/10.1016/j.chemosphere.2016.09.054

    Article  CAS  Google Scholar 

  43. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946. https://doi.org/10.1021/cr030027b

    Article  CAS  PubMed  Google Scholar 

  44. Gradzielski M, Langevin D, Farago B (1996) Experimental investigation of the structure of nonionic microemulsions and their relation to the bending elasticity of the amphiphilic film. Phys Rev E 53(4):3900–3919. https://doi.org/10.1103/PhysRevE.53.3900

    Article  CAS  Google Scholar 

  45. Gunko YK, Cristmann U, Kessler VG (2002) Synthesis and structure of the first FeII heterometallic alkoxide [(THF)NaFe(OtBu)3]2—a possible precursor for new materials. Eur J Inorg Chem 2002(5):1029–1031. https://doi.org/10.1002/1099-0682(200205)2002:5%3c1029::AID-EJIC1029%3e3.0.CO;2-X

    Article  Google Scholar 

  46. Xu J, Yang H, Wuyou Fu, Kai Du, Sui Y, Chen J, Zeng Yi, Li M, Zou G (2007) Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J Magn Magn Mater 309(2):307–311. https://doi.org/10.1016/j.jmmm.2006.07.037

    Article  CAS  Google Scholar 

  47. Sivashankar R, Sathya AB, Vasantharaj K, Sivasubramanian V (2014) Magnetic composite an environmental super adsorbent for dye sequestration—a review. Environ Nanotechnol Monit Manag 1–2:36–49. https://doi.org/10.1016/j.enmm.2014.06.001

    Article  Google Scholar 

  48. Pourzamani H, Parastar S, Hashemi M (2017) The elimination of xylene from aqueous solutions using single wall carbon nanotube and magnetic nanoparticle hybrid adsorbent. Process Saf Environ Prot 109:688–696. https://doi.org/10.1016/j.psep.2017.05.010

    Article  CAS  Google Scholar 

  49. Kyzas GZ, Deliyanni EA, Lazaridis NK (2014) Magnetic modification of microporous carbon for dye adsorption. J Colloid Interface Sci 430:166–173. https://doi.org/10.1016/j.jcis.2014.05.049

    Article  CAS  PubMed  Google Scholar 

  50. Shao G, Yonggen Lu, Fangfang Wu, Yang C, Zeng F, Qilin Wu (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47(10):4400–4409. https://doi.org/10.1007/s10853-012-6294-5

    Article  CAS  Google Scholar 

  51. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Yue Wu, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  52. He Y, Yi C, Zhang X, Zhao W, Yu D (2021) Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. TrAC Trends Anal Chem 136:116191. https://doi.org/10.1016/j.trac.2021.116191

    Article  CAS  Google Scholar 

  53. Luo Li, Yang Y, Haipu Li Ru, Ding QW, Yang Z (2018) Size characterization of silver nanoparticles after separation from silver ions in environmental water using magnetic reduced graphene oxide. Sci Total Environ 612:1215–1222. https://doi.org/10.1016/j.scitotenv.2017.09.024

    Article  CAS  PubMed  Google Scholar 

  54. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312

    Article  CAS  PubMed  Google Scholar 

  55. Kadari M, Kaid M, Ali MB, Villemin D (2017) Selective study of elimination of Cd(II) and Pb(II) from aqueous solution by novel hybrid material. J Chin Adv Mater Soc 5(3):149–157. https://doi.org/10.1080/22243682.2017.1329027

    Article  CAS  Google Scholar 

  56. Zenki M, Minamisawa K, Yokoyama T (2005) Clean Analytical methodology for the determination of lead with arsenazo III by cyclic flow-injection analysis. Talanta 68(2):281–286. https://doi.org/10.1016/j.talanta.2005.07.059

    Article  CAS  PubMed  Google Scholar 

  57. Rohwer H, Collier N, Hosten E (1995) Spectrophotometric study of arsenazo III and its interactions with lanthanides. Anal Chim Acta 314(3):219–223. https://doi.org/10.1016/0003-2670(95)00279-9

    Article  CAS  Google Scholar 

  58. Faniyi IO, Fasakin O, Olofinjana B, Adekunle AS, Oluwasusi TV, Eleruja MA, Ajayi EOB (2019) The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches. SN Appl Sci 1(10):1181. https://doi.org/10.1007/s42452-019-1188-7

    Article  CAS  Google Scholar 

  59. Xu C, Shi X, Ji A, Shi L, Zhou C, Cui Y (2015) Fabrication and characteristics of reduced graphene oxide produced with different green reductants. Édité par Bing Xu. PLoS One 10(12):e0144842. https://doi.org/10.1371/journal.pone.0144842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abasali karaj abad Z, Nemati A, Khachatourian AM, Golmohammad M (2020) Synthesis and characterization of RGO/Fe2O3 nanocomposite as an efficient supercapacitor electrode material. J Mater Sci Mater Electron 31(17):14998–15005. https://doi.org/10.1007/s10854-020-04062-7

    Article  CAS  Google Scholar 

  61. Sanchez JS, Pendashteh A, Palma J, Anderson M, Marcilla R (2017) Anchored Fe3O4 nanoparticles on RGO nanosheets as high-power negative electrodes for aqueous batteries. ChemElectroChem 4(6):1295–1305. https://doi.org/10.1002/celc.201700048

    Article  CAS  Google Scholar 

  62. Wang Y, Alsmeyer DC, McCreery RL (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater 2(5):557–563. https://doi.org/10.1021/cm00011a018

    Article  CAS  Google Scholar 

  63. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41. https://doi.org/10.1021/nl071822y

    Article  CAS  PubMed  Google Scholar 

  64. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154. https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  65. Biswal S, Bhaskaram DS, Govindaraj G (2020) α-Fe2O3/reduced graphene oxide nanocomposite: interfacial effect on the magnetic property. J Supercond Novel Magn 33(6):1629–1632. https://doi.org/10.1007/s10948-019-05211-8

    Article  CAS  Google Scholar 

  66. Biswal S, Bhaskaram DS, Govindaraj G (2018) Graphene oxide: structure and temperature dependent magnetic characterization. Mater Res Express 5(8):086104. https://doi.org/10.1088/2053-1591/aad1cf

    Article  CAS  Google Scholar 

  67. Bhowmik RN, Saravanan A (2010) Surface magnetism, morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (Hematite) nanograins. J Appl Phys 107(5):053916. https://doi.org/10.1063/1.3327433

    Article  CAS  Google Scholar 

  68. Mohan VB, Jayaraman K, Bhattacharyya D (2020) Brunauer–Emmett–Teller (BET) specific surface area analysis of different graphene materials: a comparison to their structural regularity and electrical properties. Solid State Commun 320:114004. https://doi.org/10.1016/j.ssc.2020.114004

    Article  CAS  Google Scholar 

  69. Mercier G, Klechikov A, Hedenström M, Johnels D, Baburin IA, Seifert G, Mysyk R, Talyzin AV (2015) Porous graphene oxide/diboronic acid materials: structure and hydrogen sorption. J Phys Chem C 119(49):27179–27191. https://doi.org/10.1021/acs.jpcc.5b06402

    Article  CAS  Google Scholar 

  70. Kuśmierek K, Świątkowski A (2015) The influence of different agitation techniques on the adsorption kinetics of 4-chlorophenol on granular activated carbon. React Kinet Mech Catal 116(1):261–271. https://doi.org/10.1007/s11144-015-0889-1

    Article  CAS  Google Scholar 

  71. Priddy SA, Hanley TR (2003) Effect of agitation on removal of acetic acid from pretreated hydrolysate by activated carbon. Appl Biochem Biotechnol 106(1–3):353–364. https://doi.org/10.1385/ABAB:106:1-3:353

    Article  Google Scholar 

  72. Khalid A, Ihsanullah MZ (2018) A comparative study on the adsorption of eriochrome black T dye from aqueous solution on graphene and acid-modified graphene. Arab J Sci Eng 43(5):2167–2179. https://doi.org/10.1007/s13369-017-2543-x

    Article  CAS  Google Scholar 

  73. Ouyang D, Zhuo Y, Liang Hu, Zeng Q, Yuehua Hu, He Z (2019) Research on the adsorption behavior of heavy metal ions by porous material prepared with silicate tailings. Minerals 9(5):291. https://doi.org/10.3390/min9050291

    Article  CAS  Google Scholar 

  74. Cozmuta LM, Cozmuta AM, Peter A, Nicula C, Nsimba EB, Tutu H (2012) The influence of ph on the adsorption of lead by Na-clinoptilolite: kinetic and equilibrium studies. Water SA 38:269–278

    Article  Google Scholar 

  75. Z Tang, H Wu, Q Wen, L Hu (2019) Effect of adsorbent dosage to adsorbate concentration ratio on the adsorption of Cd(II) on coal gangue. In: Zhan L, Chen Y, Bouazza A (eds) Proceedings of the 8th international congress on environmental geotechnics volume 1. Environmental science and engineering. Springer, Singapore, pp 428–35. https://doi.org/10.1007/978-981-13-2221-1_45

  76. Al-Shehri HS, Almudaifer E, Alorabi AQ, Alanazi HS, Alkorbi AS, Alharthi FA (2021) Effective adsorption of crystal violet from aqueous solutions with effective adsorbent: equilibrium, mechanism studies and modeling analysis. Environ Pollut Bioavailab 33(1):214–226. https://doi.org/10.1080/26395940.2021.1960199

    Article  CAS  Google Scholar 

  77. Biswas S, Bal M, Behera S, Sen T, Meikap B (2019) Process optimization study of Zn2+ adsorption on biochar-alginate composite adsorbent by response surface methodology (RSM). Water 11(2):325. https://doi.org/10.3390/w11020325

    Article  CAS  Google Scholar 

  78. Gao J, Liu Yu, Li X, Yang M, Wang J, Chen Y (2020) A Promising and cost-effective biochar adsorbent derived from Jujube Pit for the removal of Pb(II) from aqueous solution. Sci Rep 10(1):7473. https://doi.org/10.1038/s41598-020-64191-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gebreslassie YT (2020) Equilibrium, kinetics, and thermodynamic studies of malachite green adsorption onto Fig (Ficus Cartia) leaves. J Anal Methods Chem 2020:1–11. https://doi.org/10.1155/2020/7384675

    Article  CAS  Google Scholar 

  80. Gorzin F, Abadi MBR (2018) Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: kinetics and thermodynamics studies. Adsorpt Sci Technol 36(1–2):149–169. https://doi.org/10.1177/0263617416686976

    Article  CAS  Google Scholar 

  81. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 2017:1–11. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  82. Belhachemi M, Addoun F (2011) Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1(3–4):111–117. https://doi.org/10.1007/s13201-011-0014-1

    Article  CAS  Google Scholar 

  83. Adeola AO, de Lange J, Forbes PBC (2021) Adsorption of antiretroviral drugs, efavirenz and nevirapine from aqueous solution by graphene wool: kinetic, equilibrium, thermodynamic and computational studies. Appl Surf Sci Adv 6:100157. https://doi.org/10.1016/j.apsadv.2021.100157

    Article  Google Scholar 

  84. Anthony ET, Ojemaye MO, Okoh AI, Okoh OO (2020) Synthesis of CeO2 as promising adsorbent for the management of free-DNA harboring antibiotic resistance genes from tap-water. Chem Eng J 401:125562. https://doi.org/10.1016/j.cej.2020.125562

    Article  CAS  Google Scholar 

  85. Iriarte-Velasco U, Álvarez-Uriarte JI, González-Marcos MP, González-Velasco JR (2014) Microcolumn adsorption studies of acid/basic dyes related to the physicochemical properties of the adsorbent. Coloration Technol 130(1):62–72. https://doi.org/10.1111/cote.12058

    Article  CAS  Google Scholar 

  86. Xu Z, Cai J-G, Pan B-C (2013) Mathematically modeling fixed-bed adsorption in aqueous systems. J Zhejiang Univ Sci A 14(3):155–176. https://doi.org/10.1631/jzus.A1300029

    Article  CAS  Google Scholar 

  87. William K, Serkan Emik G, Öngen A, Özcan HK, Aydın S (2019) Modelling of adsorption kinetic processes—errors, theory and application. In: Edebali S (ed) Advanced sorption process applications. IntechOpen. https://doi.org/10.5772/intechopen.80495

  88. El-Nemr MA, Yılmaz M, Ragab S, El Nemr A (2022) Biochar-SO prepared from pea peels by dehydration with sulfuric acid improves the adsorption of Cr6+ from water. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-02378-4

    Article  Google Scholar 

  89. Avelar D, Viana F, Pires BC, Nascimento TA, Mano V, Borges KB (2017) Polyaniline-deposited cellulose fiber composite prepared via in situ polymerization: enhancing adsorption properties for removal of meloxicam from aqueous media. RSC Adv 7(21):12639–12649. https://doi.org/10.1039/C6RA27019K

    Article  Google Scholar 

  90. Hokmabadi F, Zadmard R, Akbarzadeh A, Tafakori V, Jalali MR, Ahmadian G (2022) Synthesis of a New Chitosan-p-Tert-Butylcalix[4]arene polymer as adsorbent for toxic mercury ion. R Soc Open Sci 9(5):211223. https://doi.org/10.1098/rsos.211223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Korake SR, Jadhao PD (2021) Investigation of taguchi optimization, equilibrium isotherms, and kinetic modeling for cadmium adsorption onto deposited silt. Heliyon 7(1):e05755. https://doi.org/10.1016/j.heliyon.2020.e05755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Morrison SR (1990) Adsorption and desorption. In: Morrison SR (ed) The chemical physics of surfaces. Springer US, Boston, pp 251–295

    Chapter  Google Scholar 

  93. Singh R, Bhateria R (2020) Experimental and modeling process optimization of lead adsorption on magnetite nanoparticles via isothermal, kinetics, and thermodynamic studies. ACS Omega 5(19):10826–10837. https://doi.org/10.1021/acsomega.0c00450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bermúdez-Salguero C, Gracia-Fadrique J (2011) Analysis of Gibbs adsorption equation and thermodynamic relation between Gibbs standard energies of adsorption and micellization through a surface equation of state. J Colloid Interface Sci 355(2):518–519. https://doi.org/10.1016/j.jcis.2010.12.040

    Article  CAS  PubMed  Google Scholar 

  95. Horsfall JM, Spiff AI (2005) Effects of temperature on the sorption of Pb2+ and Cd2+ from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron J Biotechnol 8(2):162–169. https://doi.org/10.2225/vol8-issue2-fulltext-4

    Article  Google Scholar 

  96. Petrovic B, Gorbounov M, Soltani SM (2022) Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents. Carbon Capture Sci Technol 3:100045. https://doi.org/10.1016/j.ccst.2022.100045

    Article  CAS  Google Scholar 

  97. Han R, Zou W, Li H, Li Y, Shi J (2006) Copper(II) and Lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite. J Hazard Mater 137(2):934–942. https://doi.org/10.1016/j.jhazmat.2006.03.016

    Article  CAS  PubMed  Google Scholar 

  98. Miralles N, Valderrama C, Casas I, Martínez M, Florido A (2010) Cadmium and lead removal from aqueous solution by grape stalk wastes: modeling of a fixed-bed column. J Chem Eng Data 55(9):3548–3554. https://doi.org/10.1021/je100200w

    Article  CAS  Google Scholar 

  99. Lung I, Stan M, Opris O, Soran M-L, Senila M, Stefan M (2018) Removal of Lead(II), Cadmium(II), and Arsenic(III) from aqueous solution using magnetite nanoparticles prepared by green synthesis with Box–Behnken design. Anal Lett 51(16):2519–2531. https://doi.org/10.1080/00032719.2018.1446974

    Article  CAS  Google Scholar 

  100. Amarasinghe BM, Williams RA (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132(1–3):299–309. https://doi.org/10.1016/j.cej.2007.01.016

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kadari.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadari, M., Makhlouf, M., Khaoua, O.O. et al. The Removal Efficiency of Cadmium (Cd2+) and Lead (Pb2+) from Aqueous Solution by Graphene Oxide (GO) and Magnetic Graphene Oxide (α-Fe2O3/GO). Chemistry Africa 6, 1515–1528 (2023). https://doi.org/10.1007/s42250-023-00586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-023-00586-7

Keywords

Navigation