Skip to main content

Advertisement

Log in

Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The depletion of renewable source of energy and wastewater treatment are one of the concerning issues for the growing population. To overcome these problems, algae can be acts as one of the potent sources for biofuels feedstocks as well as biosorbents for wastewater treatment. The cultivation of microalgae leads to the removal of nutrients, heavy metals, dyes, and pharmaceutical waste from wastewater. Extracted lipids from microalgae are utilized for biodiesel production and lipid extracted microalgae can act as feedstocks for the production of bioethanol, biobutanol, and biogas. Biochar formed from microalgae can act as biosorbents. Several factors like temperature, the intensity of light, CO2, nutrient concentration, and inoculum size affect the cultivation of microalgae. Dynamic models are proposed for algal growth kinetics in raceway ponds and photobioreactors. Similarly, biomass concentration, initial pH, contact time, temperature, initial metal and dyes concentration, etc. affect the biosorption process. Biosorption isotherm kinetics are employed for heavy metals and dyes removal from wastewater. Energy sustainability of microalgal biodiesel production is evaluated by the life cycle energy balance equation, circular economy, and life cycle assessment (LCA) analysis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FTIR:

Fourier transform infrared spectroscopy

SEM:

Scanning electron microscopy

EDX:

Energy-dispersive X-ray spectroscopy

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray powder diffractometer

XAS:

X-ray absorption spectroscopy

AAS:

Atomic absorption spectrophotometry

SAA:

Surface area analyzer

TGA:

Thermogravimetric analyzer

ICP-AES:

Inductively coupled plasma atomic emission spectroscopy

ICP-AES:

Inductively coupled plasma optical emission spectrometry

ICP-MS:

Inductively coupled plasma mass spectrometry

TG:

Triglyceride

MG:

Monoglyceride

DG:

Diglyceride

Gly:

Glycerol

ME:

Methyl ester

MeOH:

Methanol

TMP:

Trans-membrane pressure (bar)

EER:

Energy efficiency ratio

LCA:

Life cycle assessment

HTC:

Hydrothermal carbonization

RCF:

Relative centrifugal force

FAME:

Fatty acid methyl ester

μ:

Specific growth rate (h1)

\(X_{1}\) :

Dry weight concentration (g L1) at a time \(t_{1}\)

\(X_{2}\) :

Dry weight concentration (g L1) at a time t2

\(I_{0}\) :

Incident photon flux density (PFD) (μ mole m2 s1)

\(I\) :

Transmitted light over the layer thickness (μ mole m2 s1)

cx :

Concentration of cell dry weight (g L1)

ɛ:

Specific extinction co-efficient (L g1 cm1)

l:

Layer thickness at a random point (cm)

NCO2 :

Carbon dioxide mass transfer rate (g CO2 m3 h1)

Cco2 :

Dissolved carbon dioxide concentration in liquid phase

\(C_{{CO_{2} }}^{*}\) :

Dissolved carbon dioxide concentration at equilibrium with the gas phase

XA :

Mass concentration of microalgae

XB :

Mass concentration of bacteria

V:

Volume of the solution

C 0 :

Inlets solute concentrations at any time (t)

C :

Effluent solute concentrations at any time (t)

k Th :

Thomas model constant (mL m1 mg1)

q 0 :

Maximum solid-phase concentration of solute (mg g1)

m :

Total mass of the adsorbent (g)

t :

Bed depth service time (h)

N 0 :

Adsorption capacity (mg cm3)

Z :

Height of column (cm)

C b :

Breakthrough sorbate concentration (mg L1)

ϑ :

Linear velocity (cm h1)

K a :

Rate constant (L mg1 h1) at time t.

kAB :

Kinetic constant(L mg1 min)

kYN :

Rate of constant (L min1)

τ:

Time required for 50% adsorbate breakthrough (min)

q e :

Biosorption capacity at equilibrium (mg g1)

q m :

Maximum uptake capacity of the biosorbent

b :

Langmuir biosorption constant (L mg1)

c e :

Equilibrium metal ions concentration (mg L1)

\(X_{DR}\) :

Measure of adsorption capacity

\(K_{DR}\) :

Activity coefficient (mol2 K J2)

\(\varepsilon\) :

Polanyi potential respectively

R:

Ideal gas constant (8.314 J mol−1 K−1)

T:

Absolute temperature (K)

q t,:

Amounts of metal or dye adsorbed at time t (mg g1)

k1 :

Rate constant of the pseudo-first-order kinetic model

k2 :

Rate constant of the pseudo-second-order kinetic model

t1/2 :

Half-life time in second

Kdiff :

Rate constant of intraparticle diffusion(mg g1 min1/2)

α:

Initial adsorption rate (mg g1 min1)

β:

Extent of surface coverage and activation energy for adsorption (g mg1)

∆G0 :

Gibb’s energy(J mol1)

∆S0 :

Adsorption entropy (J mol1 K)

∆H0 :

Adsorption enthalpy (J mol1)

\(S\) :

Sedimentation rate

\(v\) :

Particle velocity (m s1)

\(d_{p}\) :

Diameter of the particle

\(\rho_{p}\) :

Density of the particle

\(\rho\) :

Density of the fluid,

\(\omega\) :

Aangular velocity in (rad s1)

\(r\) :

Distance between the central axis and the sphere

\(J\) :

Permeate flux (L m−2 h−1)

\(\eta\) :

Viscosity of permeate (Pa s)

\(R_{m}\) :

Membrane resistance (m−1)

\(R_{c}\) :

Cake resistance (m−1)

\(R_{f}\) :

Resistance from pore blocking and absorption (m−1)

A :

Frequency or pre-exponential factor

E a :

Activation energy of the reaction,

X :

Cell concentration (g L1)

X 0 :

Initial cell concentration (g L1)

X max :

Maximum cell concentration (g L1)

μ m :

Maximum specific growth rate (h1)

P :

Ethanol concentration (g L1)

P max :

Maximum ethanol concentration (g L1)

r m :

Maximum cell production rate, (g L1·h)

r p.max :

Maximum ethanol production rate, (g L1·h)

t :

Fermentation time (h)

t L :

Lag phase or lag time from the beginning of fermentation to exponential growth or ethanol production (h)

Q:

Thermal energy (KJ)

\(m_{i}\) :

Weight of reactant and solvent involved in the reaction (kg)

\(C_{Pi}\) :

Specific heat capacity of reactant and solvent (kg kg1 °C)

\(\Delta T\) :

Change in temperature

\(C_{s}\) :

Cost of utility

\(m_{biodiesel}\) :

Weight of biodiesel produced (kg)

\(f_{I}\) :

Light intensity factor

References

  1. Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, Chen WH (2020) Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour Technol 304:122996. https://doi.org/10.1016/j.biortech.2020.122996

    Article  CAS  PubMed  Google Scholar 

  2. Li H, Watson J, Zhang Y, Lu H, Liu Z (2020) Environment-enhancing process for algal wastewater treatment, heavy metal control and hydrothermal biofuel production: a critical review. Bioresour Technol 298:122421. https://doi.org/10.1016/j.biortech.2019.122421

    Article  CAS  PubMed  Google Scholar 

  3. Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303:122886. https://doi.org/10.1016/j.biortech.2020.122886

    Article  CAS  PubMed  Google Scholar 

  4. Chin JY, Chng LM, Leong SS, Yeap SP, Yasin NHM, Toh PY (2020) Removal of synthetic dye by Chlorella vulgaris microalgae as natural adsorbent. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04557-9

    Article  Google Scholar 

  5. Gita S, Shukla SP, Saharan N et al (2019) Toxic effects of selected textile dyes on elemental composition, photosynthetic pigments, protein content and growth of a freshwater chlorophycean alga Chlorella vulgaris. Bull Environ Contam Toxicol 102:795–801. https://doi.org/10.1007/s00128-019-02599-w

    Article  CAS  PubMed  Google Scholar 

  6. Rebello S, Anoopkumar AN, Aneesh EM, Sindhu R, Binod P, Pandey A (2020) Sustainability and life cycle assessments of lignocellulosic and algal pretreatments. Bioresour Technol 301:122678. https://doi.org/10.1016/j.biortech.2019.122678

    Article  CAS  PubMed  Google Scholar 

  7. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Factor 17(1):36. https://doi.org/10.1186/s12934-018-0879-x

    Article  Google Scholar 

  8. Lee XJ, Ong HC, Gan YY, Chen WH, Mahlia TMI (2020) State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manag 210:112707. https://doi.org/10.1016/j.enconman.2020.112707

    Article  CAS  Google Scholar 

  9. Galès A, Bonnafous A, Carré C, Jauzein V, Lanouguère E, Le Floc’h E, Simier M (2019) Importance of ecological interactions during wastewater treatment using high rate algal ponds under different temperate climates. Algal Res 40:101508. https://doi.org/10.1016/j.algal.2019.101508

    Article  Google Scholar 

  10. Zhu S, Feng S, Xu Z, Qin L, Shang C, Feng P, Yuan Z (2019) Cultivation of Chlorella vulgaris on unsterilized dairy-derived liquid digestate for simultaneous biofuels feedstock production and pollutant removal. Bioresour Technol 285:121353. https://doi.org/10.1016/j.biortech.2019.121353

    Article  CAS  PubMed  Google Scholar 

  11. Fazal T, Mushtaq A, Rehman F, Khan AU, Rashid N, Farooq W, Xu J (2018) Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew Sustain Energy Rev 82:3107–3126. https://doi.org/10.1016/j.rser.2017.10.029

    Article  CAS  Google Scholar 

  12. Peng L, Fu D, Chu H, Wang Z, Qi H (2020) Biofuel production from microalgae: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-019-00939-0

    Article  Google Scholar 

  13. Menegazzo ML, Fonseca GG (2019) Biomass recovery and lipid extraction processes for microalgae biofuels production: a review. Renew Sustain Energy Rev 107:87–107. https://doi.org/10.1016/j.rser.2019.01.064

    Article  CAS  Google Scholar 

  14. Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F (2017) Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Manag 203:299–315. https://doi.org/10.1016/j.jenvman.2017.08.012

    Article  CAS  Google Scholar 

  15. Salama ES, Kurade MB, Abou-Shanab RA, El-Dalatony MM, Yang IS, Min B, Jeon BH (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sustain Energy Rev 79:1189–1211. https://doi.org/10.1016/j.rser.2017.05.091

    Article  CAS  Google Scholar 

  16. Cuellar-Bermudez SP, Aleman-Nava GS, Chandra R, Garcia-Perez JS, Contreras-Angulo JR, Markou G, Parra-Saldivar R (2017) Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res 24:438–449. https://doi.org/10.1016/j.algal.2016.08.018

    Article  Google Scholar 

  17. Yu KL, Show PL, Ong HC, Ling TC, Lan JCW, Chen WH, Chang JS (2017) Microalgae from wastewater treatment to biochar—feedstock preparation and conversion technologies. Energy Convers Manag 150:1–13. https://doi.org/10.1016/j.enconman.2017.07.060

    Article  CAS  Google Scholar 

  18. Mohan SV, Rohit MV, Chiranjeevi P, Chandra R, Navaneeth B (2015) Heterotrophic microalgae cultivation to synergize biodiesel production with waste remediation: progress and perspectives. Biores Technol 184:169–178. https://doi.org/10.1016/j.biortech.2014.10.056

    Article  CAS  Google Scholar 

  19. Maheshwari N, Krishna PK, Thakur IS, Srivastava S (2019) Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage waste water. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-05928-y

    Article  Google Scholar 

  20. Lakatos GE, Ranglová K, Manoel JC, Grivalský T, Kopecký J, Masojídek J (2019) Bioethanol production from microalgae polysaccharides. Folia microbiol. https://doi.org/10.1007/s12223-019-00732-0

    Article  Google Scholar 

  21. Kareya MS, Mariam I, Nesamma AA, Jutur PP (2020) CO2 sequestration by hybrid integrative photosynthesis (CO2-SHIP): a green initiative for multi-product biorefineries. Mater Sci Energy Technol 3:420–428. https://doi.org/10.1016/j.mset.2020.03.002

    Article  CAS  Google Scholar 

  22. Pires JC, Alvim-Ferraz MC, Martins FG (2017) Photobioreactor design for microalgae production through computational fluid dynamics: a review. Renew Sustain Energy Rev 79:248–254. https://doi.org/10.1016/j.rser.2017.05.064

    Article  CAS  Google Scholar 

  23. Kroumov AD, Módenes AN, Trigueros DEG, Espinoza-Quiñones FR, Borba CE, Scheufele FB, Hinterholz CL (2016) A systems approach for CO2 fixation from flue gas by microalgae—theory review. Process Biochem 51(11):1817–1832. https://doi.org/10.1016/j.procbio.2016.05.019

    Article  CAS  Google Scholar 

  24. Aziz MMA, Kassim KA, Shokravi Z, Jakarni FM, Lieu HY, Zaini N, Shokravi H (2020) Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: a review. Renew Sustain Energy Rev 119:109621. https://doi.org/10.1016/j.rser.2019.109621

    Article  CAS  Google Scholar 

  25. Eze VC, Velasquez-Orta SB, Hernández-García A, Monje-Ramírez I, Orta-Ledesma MT (2018) Kinetic modelling of microalgae cultivation for wastewater treatment and carbon dioxide sequestration. Algal Res 32:131–141. https://doi.org/10.1016/j.algal.2018.03.015

    Article  Google Scholar 

  26. Chandra R, Iqbal HM, Vishal G, Lee HS, Nagra S (2019) Algal biorefinery: a sustainable approach to valorize algal-based biomass towards multiple product recovery. Technol Biores. https://doi.org/10.1016/j.biortech.2019.01.104

    Article  Google Scholar 

  27. Laamanen CA, Scott JA (2020) Microalgae biofuel bioreactors for mitigation of industrial CO2 emissions. In: Singh L, Yousuf A, Mahapatra DM (eds) Bioreactors. Elsevier, pp 1–16. https://doi.org/10.1016/B978-0-12-821264-6.00001-2

  28. Xu L, Weathers PJ, Xiong XR, Liu CZ (2009) Microalgal bioreactors: challenges and opportunities. Eng Life Sci 9(3):178–189. https://doi.org/10.1002/elsc.200800111

    Article  CAS  Google Scholar 

  29. Nguyen LN, Truong MV, Nguyen AQ, Johir MAH, Commault AS, Ralph PJ, Nghiem LD (2020) A sequential membrane bioreactor followed by a membrane microalgal reactor for nutrient removal and algal biomass production. Environ Sci Water Res Technol 6(1):189–196. https://doi.org/10.1039/C9EW00851A

    Article  CAS  Google Scholar 

  30. Chu F, Cheng J, Zhang X, Ye Q, Zhou J (2019) Enhancing lipid production in microalgae Chlorella PY-ZU1 with phosphorus excess and nitrogen starvation under 15% CO2 in a continuous two-step cultivation process. Chem Eng J 375:121912. https://doi.org/10.1016/j.cej.2019.121912

    Article  CAS  Google Scholar 

  31. Fu J, Huang Y, Liao Q, Xia A, Fu Q, Zhu X (2019) Photo-bioreactor design for microalgae: a review from the aspect of CO2 transfer and conversion. Biores Technol. https://doi.org/10.1016/j.biortech.2019.121947

    Article  Google Scholar 

  32. Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Tay JH (2020) Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew Sustain Energ Rev 118:109563. https://doi.org/10.1016/j.rser.2019.109563

    Article  Google Scholar 

  33. Wu W, Chang JS (2019) Integrated algal biorefineries from process systems engineering aspects: a review. Biores Technol. https://doi.org/10.1016/j.biortech.2019.121939

    Article  Google Scholar 

  34. Gonçalves AL, Pires JC, Simões M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415. https://doi.org/10.1016/j.algal.2016.11.008

    Article  Google Scholar 

  35. Tiron O, Bumbac C, Manea E, Stefanescu M, Lazar MN (2017) Overcoming microalgae harvesting barrier by activated algae granules. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-05027-3

    Article  CAS  Google Scholar 

  36. Passos F, Gutiérrez R, Uggetti E, Garfi M, García J, Ferrer I (2017) Towards energy neutral microalgae-based wastewater treatment plants. Algal Res 28:235–243. https://doi.org/10.1016/j.algal.2017.11.006

    Article  Google Scholar 

  37. Sharma J, Kumar V, Kumar SS, Malyan SK, Mathimani T, Bishnoi NR, Pugazhendhi A (2020) Microalgal consortia for municipal wastewater treatment—lipid augmentation and fatty acid profiling for biodiesel production. J Photochem Photobiol B 202:111638. https://doi.org/10.1016/j.jphotobiol.2019.111638

    Article  CAS  PubMed  Google Scholar 

  38. Hu X, Meneses YE, Stratton J, Wang B (2019) Acclimation of consortium of micro-algae help removal of organic pollutants from meat processing wastewater. J Clean Prod 214:95–102. https://doi.org/10.1016/j.jclepro.2018.12.255

    Article  CAS  Google Scholar 

  39. Fan J, Chen Y, Zhang TC, Ji B, Cao L (2020) Performance of Chlorella sorokiniana-activated sludge consortium treating wastewater under light-limited heterotrophic condition. Chem Eng J 382:122799. https://doi.org/10.1016/j.cej.2019.122799

    Article  CAS  Google Scholar 

  40. Makut BB, Das D, Goswami G (2019) Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: a sustainable approach. Algal Res 37:228–239. https://doi.org/10.1016/j.algal.2018.11.020

    Article  Google Scholar 

  41. Chen X, Hu Z, Qi Y, Song C, Chen G (2019) The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation. Biores Technol 292:122017. https://doi.org/10.1016/j.biortech.2019.122017

    Article  CAS  Google Scholar 

  42. Huo S, Chen J, Zhu F, Zou B, Chen X, Basheer S, Qian J (2019) Filamentous microalgae Tribonema sp. cultivation in the anaerobic/oxic effluents of petrochemical wastewater for evaluating the efficiency of recycling and treatment. Biochem Eng J 145:27–32. https://doi.org/10.1016/j.bej.2019.02.011

    Article  CAS  Google Scholar 

  43. Hernández-García A, Velásquez-Orta SB, Novelo E, Yáñez-Noguez I, Monje-Ramírez I, Ledesma MTO (2019) Wastewater-leachate treatment by microalgae: biomass, carbohydrate and lipid production. Ecotoxicol Environ Saf 174:435–444. https://doi.org/10.1016/j.ecoenv.2019.02.052

    Article  CAS  PubMed  Google Scholar 

  44. Larsen C, Yu ZH, Flick R, Passeport E (2019) Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci Total Environ 695:133772. https://doi.org/10.1016/j.scitotenv.2019.133772

    Article  CAS  PubMed  Google Scholar 

  45. Urrutia C, Yañez-Mansilla E, Jeison D (2019) Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res 43:101659. https://doi.org/10.1016/j.algal.2019.101659

    Article  Google Scholar 

  46. Marzari F, Bellucci M, Fornaroli R, Bani A, Ficara E, Mezzanotte V (2019) Lab-scale testing of operation parameters for algae based treatment of piggery wastewater. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5972

    Article  Google Scholar 

  47. Dhaouefi Z, Toledo-Cervantes A, Ghedira K, Chekir-Ghedira L, Muñoz R (2019) Decolorization and phytotoxicity reduction in an innovative anaerobic/aerobic photobioreactor treating textile wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.06.106

    Article  PubMed  Google Scholar 

  48. Cheng P, Cheng JJ, Cobb K, Zhou C, Zhou N, Addy M, Ruan R (2019) Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Biores Technol. https://doi.org/10.1016/j.biortech.2019.122516

    Article  Google Scholar 

  49. Piligaev AV, Sorokina KN, Shashkov MV, Parmon VN (2018) Screening and comparative metabolic profiling of high lipid content microalgae strains for application in wastewater treatment. Biores Technol 250:538–547. https://doi.org/10.1016/j.biortech.2017.11.063

    Article  CAS  Google Scholar 

  50. Das C, Ramaiah N, Pereira E, Naseera K (2018) Efficient bioremediation of tannery wastewater by monostrains and consortium of marine Chlorella sp and Phormidium sp. Int J Phytoremediat 20(3):284–292. https://doi.org/10.1080/15226514.2017.1374338

    Article  CAS  Google Scholar 

  51. Shi X, Yeap TS, Huang S, Chen J, Ng HY (2018) Pretreatment of saline antibiotic wastewater using marine microalga. Biores Technol 258:240–246. https://doi.org/10.1016/j.biortech.2018.02.110

    Article  CAS  Google Scholar 

  52. Vuppaladadiyam AK, Merayo N, Blanco A, Hou J, Dionysiou DD, Zhao M (2018) Simulation study on comparison of algal treatment to conventional biological processes for greywater treatment. Algal Res 35:106–114. https://doi.org/10.1016/j.algal.2018.08.021

    Article  Google Scholar 

  53. Bello M, Ranganathan P, Brennan F (2017) Dynamic modelling of microalgae cultivation process in high rate algal wastewater pond. Algal Res 24:457–466. https://doi.org/10.1016/j.algal.2016.10.016

    Article  Google Scholar 

  54. Rangabhashiyam S, Balasubramanian P (2019) Characteristics, performances, equilibrium and kinetic modeling aspects of heavy metal removal using algae. Bioresour Technol Rep 5:261–279. https://doi.org/10.1016/j.biteb.2018.07.009

    Article  Google Scholar 

  55. Cheng SY, Show PL, Lau BF, Chang JS, Ling TC (2019) New prospects for modified algae in heavy metal adsorption. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2019.04.007

    Article  PubMed  Google Scholar 

  56. Sun X, Huang H, Zhao D, Lin J, Gao P, Yao L (2020) Adsorption of Pb2+ onto freeze-dried microalgae and environmental risk assessment. J Environ Manag 265:110472. https://doi.org/10.1016/j.jenvman.2020.110472

    Article  CAS  Google Scholar 

  57. Saravanan A, Kumar PS, Yaashikaa PR, Kanmani S, Varthine RH, Muthu CMM, Yuvaraj D (2019) Modelling on the removal of dye from industrial wastewater using surface improved Enteromorpha intestinalis. Int J Environ Res 13(2):349–366. https://doi.org/10.1007/s41742-019-00181-0

    Article  CAS  Google Scholar 

  58. Nicomel NR, Otero-Gonzalez L, Arashiro L, Garfí M, Ferrer I, Van Der Voort P, Du Laing G (2020) Microalgae: a sustainable adsorbent with high potential for upconcentration of indium (iii) from liquid process and waste streams. Green Chem 22(6):1985–1995. https://doi.org/10.1039/C9GC03073E

    Article  CAS  Google Scholar 

  59. Afshariani F, Roosta A (2019) Experimental study and mathematical modeling of biosorption of methylene blue from aqueous solution in a packed bed of microalgae Scenedesmus. J Clean Prod 225:133–142. https://doi.org/10.1016/j.jclepro.2019.03.275

    Article  CAS  Google Scholar 

  60. Patel H (2019) Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci 9(3):45. https://doi.org/10.1007/s13201-019-0927-7

    Article  CAS  Google Scholar 

  61. Daneshvar E, Zarrinmehr MJ, Kousha M, Hashtjin AM, Saratale GD, Maiti A, Bhatnagar A (2019) Hexavalent chromium removal from water by microalgal-based materials: adsorption, desorption and recovery studies. Biores Technol 293:122064. https://doi.org/10.1016/j.biortech.2019.122064

    Article  CAS  Google Scholar 

  62. Brion-Roby R, Gagnon J, Nosrati S, Deschênes JS, Chabot B (2018) Adsorption and desorption of molybdenum (VI) in contaminated water using a chitosan sorbent. J Water Process Eng 23:13–19. https://doi.org/10.1016/j.jwpe.2018.02.016

    Article  Google Scholar 

  63. Devi S, Murugappan A, Rajesh Kannan R (2016) Textile dye wastewater treatment using freshwater algae in packed-bed reactor: modeling. Desalin Water Treat 57(38):17995–18002. https://doi.org/10.1080/19443994.2015.1085910

    Article  CAS  Google Scholar 

  64. Jerold M, Joseph D, Patra N, Sivasubramanian V (2016) Fixed-bed column studies for the removal of hazardous malachite green dye from aqueous solution using novel nano zerovalent iron algal biocomposite. Nanotechnol Environ Eng 1(1):8. https://doi.org/10.1007/s41204-016-0007-2

    Article  Google Scholar 

  65. Tukarambai M, Venakateswarlu P (2019) A study of lead removal using sargassum tenerrimum (brown algae): biosorption in column study. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.11.254

    Article  Google Scholar 

  66. Beni AA, Esmaeili A (2020) Biosorption, an efficient method for removing heavy metals from industrial effluents: a review. Environ Technol Innov 17:100503. https://doi.org/10.1016/j.eti.2019.100503

    Article  Google Scholar 

  67. Moreira VR, Lebron YAR, Freire SJ, Santos LVS, Palladino F, Jacob RS (2019) Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: optimization, equilibrium and kinetics studies. Microchem J 145:119–129. https://doi.org/10.1016/j.microc.2018.10.027

    Article  CAS  Google Scholar 

  68. da Rosa ALD, Carissimi E, Dotto GL, Sander H, Feris LA (2018) Biosorption of rhodamine B dye from dyeing stones effluents using the green microalgae Chlorella pyrenoidosa. J Clean Prod 198:1302–1310. https://doi.org/10.1016/j.jclepro.2018.07.128

    Article  CAS  Google Scholar 

  69. Gül ÜD, Taştan BE, Bayazıt G (2019) Assessment of algal biomasses having different cell structures for biosorption properties of acid red P-2BX dye. S Afr J Bot 127:147–152. https://doi.org/10.1016/j.sajb.2019.08.047

    Article  CAS  Google Scholar 

  70. Jiang X, Wang H, Hu E, Lei Z, Fan B, Wang Q (2020) Efficient adsorption of uranium from aqueous solutions by microalgae based aerogel. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110383

    Article  Google Scholar 

  71. Jayakumar V, Govindaradjane S, Rajasimman M (2019) Isotherm and kinetic modeling of sorption of cadmium onto a novel red algal sorbent, Hypnea musciformis. Model Earth Syst Environ 5:793–803. https://doi.org/10.1007/s40808-018-0566-2

    Article  Google Scholar 

  72. Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR (2011) Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mater 185(1):401–407. https://doi.org/10.1016/j.jhazmat.2010.09.047

    Article  CAS  PubMed  Google Scholar 

  73. Sebeia N, Jabli M, Ghith A, Elghoul Y, Alminderej FM (2019) Production of cellulose from Aegagropila linnaei macro-algae: chemical modification, characterization and application for the bio-sorptionof cationic and anionic dyes from water. Int J Boil Macromol 135:152–162. https://doi.org/10.1016/j.ijbiomac.2019.05.128

    Article  CAS  Google Scholar 

  74. Dulla JB, Tamana MR, Boddu S, Pulipati K, Srirama K (2020) Biosorption of copper (II) onto spent biomass of Gelidiella acerosa (brown marine algae): optimization and kinetic studies. Appl Water Sci 10(2):1–10. https://doi.org/10.1007/s13201-019-1125-3

    Article  CAS  Google Scholar 

  75. Mirghaffari N, Moeini E, Farhadian O (2015) Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. J Appl Phycol 27:311–320. https://doi.org/10.1007/s10811-014-0345-z

    Article  CAS  Google Scholar 

  76. Birungi ZS, Chirwa EMN (2015) The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources. J Hazard Mater 299:67–77. https://doi.org/10.1016/j.jhazmat.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  77. Dirbaz M, Roosta A (2018) Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. J Environ Chem Eng 6(2):2302–2309. https://doi.org/10.1016/j.jece.2018.03.039

    Article  CAS  Google Scholar 

  78. Shen Y, Li H, Zhu W, Ho SH, Yuan W, Chen J, Xie Y (2017) Microalgal-biochar immobilized complex: a novel efficient biosorbent for cadmium removal from aqueous solution. Biores Technol 244:1031–1038. https://doi.org/10.1016/j.biortech.2017.08.085

    Article  CAS  Google Scholar 

  79. Kayalvizhi K, Vijayaraghavan K, Velan M (2015) Biosorption of Cr (VI) using a novel microalga Rhizoclonium hookeri: equilibrium, kinetics and thermodynamic studies. Desalin Water Treat 56(1):194–203. https://doi.org/10.1080/19443994.2014.932711

    Article  CAS  Google Scholar 

  80. Suganya S, Saravanan A, Senthil Kumar P, Yashwanthraj M, Sundar Rajan P, Kayalvizhi K (2017) Sequestration of Pb (II) and Ni (II) ions from aqueous solution using microalga Rhizoclonium hookeri: adsorption thermodynamics, kinetics, and equilibrium studies. J Water Reuse Desalin 7(2):214–227. https://doi.org/10.2166/wrd.2016.200

    Article  Google Scholar 

  81. Saber M, Takahashi F, Yoshikawa K (2018) Characterization and application of microalgae hydrochar as a low-cost adsorbent for Cu (II) ion removal from aqueous solutions. Environ Sci Pollut Res 25(32):32721–32734. https://doi.org/10.1007/s11356-018-3106-8

    Article  CAS  Google Scholar 

  82. Jiang X, Zhou X, Li C, Wan Z, Yao L, Gao P (2019) Adsorption of copper by flocculated Chlamydomonas microsphaera microalgae and polyaluminium chloride in heavy metal-contaminated water. J Appl Phycol 31(2):1143–1151. https://doi.org/10.1007/s10811-018-1636-6

    Article  CAS  Google Scholar 

  83. Shen L, Wang J, Li Z, Fan L, Chen R, Wu X, Zeng W (2020) A high-efficiency Fe2O3@ microalgae composite for heavy metal removal from aqueous solution. J Water Process Eng 33:101026. https://doi.org/10.1016/j.jwpe.2019.101026

    Article  Google Scholar 

  84. Wei C, Huang Y, Liao Q, Xia A, Zhu X, Zhu X (2019) Adsorption thermodynamic characteristics of Chlorella vulgaris with organic polymer adsorbent cationic starch: effect of temperature on adsorption capacity and rate. Bioresour Technol 293:122056. https://doi.org/10.1016/j.biortech.2019.122056

    Article  CAS  PubMed  Google Scholar 

  85. Kadir WNA, Lam MK, Uemura Y, Lim JW, Lee KT (2018) Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: a review. Energy convers Manag 171:1416–1429. https://doi.org/10.1016/j.enconman.2018.06.074

    Article  CAS  Google Scholar 

  86. Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Li B (2020) A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol 301:122804. https://doi.org/10.1016/j.biortech.2020.122804

    Article  CAS  PubMed  Google Scholar 

  87. Roselet F, Vandamme D, Muylaert K, Abreu PC (2019) Harvesting of microalgae for biomass production. In: Wang Z (ed) Asraful Alam Md. Microalgae biotechnology for development of biofuel and wastewater treatment. Springer, Singapore, pp 211–243. https://doi.org/10.1007/978-981-13-2264-8_1

    Chapter  Google Scholar 

  88. Mofijur M, Rasul MG, Hassan NMS, Nabi MN (2019) Recent development in the production of third generation biodiesel from microalgae. Energy Procedia 156:53–58. https://doi.org/10.1016/j.egypro.2018.11.088

    Article  CAS  Google Scholar 

  89. Pérez L, Salgueiro JL, Maceiras R, Cancela Á, Sánchez Á (2017) An effective method for harvesting of marine microalgae: pH induced flocculation. Biomass Bioenergy 97:20–26. https://doi.org/10.1016/j.biombioe.2016.12.010

    Article  CAS  Google Scholar 

  90. Gupta SK, Ansari FA, Bauddh K, Singh B, Nema AK, Pant KK (2017) Harvesting of microalgae for biofuels: comprehensive performance evaluation of natural, inorganic, and synthetic locculants. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer, Cham, pp 131–156. https://doi.org/10.1016/B978-0-12-817388-6.00002-7

    Chapter  Google Scholar 

  91. Hawari AH, Alkhatib AM, Das P, Thaher M, Benamor A (2020) Effect of the induced dielectrophoretic force on harvesting of marine microalgae (Tetraselmis sp.) in electrocoagulation. J. Environ Manag. 260:110106. https://doi.org/10.1016/j.jenvman.2020.110106

    Article  CAS  Google Scholar 

  92. Patel A, Matsakas L, Sartaj K, Chandra R (2020) Extraction of lipids from algae using supercritical carbon dioxide. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 17–39. https://doi.org/10.1016/B978-0-12-817388-6.00002-7

  93. Alhattab M, Kermanshahi-Pour A, Brooks MSL (2019) Microalgae disruption techniques for product recovery: influence of cell wall composition. J Appl Phycol 31(1):61–88. https://doi.org/10.1007/s10811-018-1560-9

    Article  Google Scholar 

  94. Pan J, Muppaneni T, Sun Y, Reddy HK, Fu J, Lu X, Deng S (2016) Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 178:49–55. https://doi.org/10.1016/j.fuel.2016.03.037

    Article  CAS  Google Scholar 

  95. Zhou X, Jin W, Tu R, Guo Q, Han SF, Chen C, Wang Q (2019) Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. J Clean Prod 221:502–508. https://doi.org/10.1016/j.jclepro.2019.02.260

    Article  CAS  Google Scholar 

  96. Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, Pugazhendhi A (2020) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere 242:125079. https://doi.org/10.1016/j.chemosphere.2019.125079

    Article  CAS  PubMed  Google Scholar 

  97. Tang X, Zhang C, Yang X (2020) Optimizing process of hydrothermal liquefaction of microalgae via flash heating and isolating aqueous extract from bio-crude. J Clean Prod 258:120660. https://doi.org/10.1016/j.jclepro.2020.120660

    Article  CAS  Google Scholar 

  98. Mathimani T, Mallick N (2019) A review on the hydrothermal processing of microalgal biomass to bio-oil-knowledge gaps and recent advances. J Clean Prod 217:69–84. https://doi.org/10.1016/j.jclepro.2019.01.129

    Article  CAS  Google Scholar 

  99. Ma G, Mu R, Capareda SC, Qi F (2020) Use of ultrasound for aiding lipid extraction and biodiesel production of microalgae harvested by chitosan. Environ Technol. https://doi.org/10.1080/09593330.2020.1745288

    Article  PubMed  Google Scholar 

  100. Ranjith Kumar R, Hanumantha Rao P, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:61. https://doi.org/10.3389/fenrg.2014.00061

    Article  Google Scholar 

  101. Garcia-Vaquero M, Rajauria G, Tiwari B (2020) Conventional extraction techniques: solvent extraction. In: Torres MD, Kraan S, Dominguez H (eds) Sustainable seaweed technologies. Elsevier, pp 171–189. https://doi.org/10.1016/B978-0-12-817943-7.00006-8

  102. Shin HY, Shim SH, Ryu YJ, Yang JH, Lim SM, Lee CG (2018) Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnol Bioprocess Eng 23(1):16–22. https://doi.org/10.1007/s12257-017-0392-9

    Article  CAS  Google Scholar 

  103. Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14. https://doi.org/10.1016/j.wri.2015.02.002

    Article  Google Scholar 

  104. Ling Y, Sun LP, Wang SY, Lin CSK, Sun Z, Zhou ZG (2019) Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochem Eng J 148:162–169. https://doi.org/10.1016/j.bej.2019.05.012

    Article  CAS  Google Scholar 

  105. Bélanger-Lépine F, Tremblay A, Huot Y, Barnabé S (2018) Cultivation of an algae-bacteria consortium in wastewater from an industrial park: effect of environmental stress and nutrient deficiency on lipid production. Bioresour Technol 267:657–665. https://doi.org/10.1016/j.biortech.2018.07.099

    Article  CAS  PubMed  Google Scholar 

  106. Tan XB, Zhao XC, Zhang YL, Zhou YY, Yang LB, Zhang WW (2018) Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresour Technol 247:784–793. https://doi.org/10.1016/j.biortech.2017.09.152

    Article  CAS  PubMed  Google Scholar 

  107. Rinna F, Buono S, Cabanelas ITD, Nascimento IA, Sansone G, Barone CMA (2017) Wastewater treatment by microalgae can generate high quality biodiesel feedstock. J Water Process Eng 18:144–149. https://doi.org/10.1016/j.jwpe.2017.06.006

    Article  Google Scholar 

  108. Lam MK, Yusoff MI, Uemura Y, Lim JW, Khoo CG, Lee KT, Ong HC (2017) Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew Energy 103:197–207. https://doi.org/10.1016/j.renene.2016.11.032

    Article  CAS  Google Scholar 

  109. Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53. https://doi.org/10.1016/j.ecoleng.2016.11.013

    Article  Google Scholar 

  110. Mousavi S, Najafpour GD, Mohammadi M, Seifi MH (2018) Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO2 fixation, lipid production and wastewater treatment. Bioprocess Biosyst Eng 41(4):519–530. https://doi.org/10.1007/s00449-017-1887-7

    Article  CAS  PubMed  Google Scholar 

  111. Di Caprio F, Altimari P, Pagnanelli F (2018) Integrated microalgae biomass production and olive mill wastewater biodegradation: optimization of the wastewater supply strategy. Chem Eng J 349:539–546. https://doi.org/10.1016/j.cej.2018.05.084

    Article  CAS  Google Scholar 

  112. Cheah WY, Show PL, Juan JC, Chang JS, Ling TC (2018) Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Convers Manag 164:188–197. https://doi.org/10.1016/j.enconman.2018.02.094

    Article  CAS  Google Scholar 

  113. Hena S, Znad H, Heong KT, Judd S (2018) Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res 128:267–277. https://doi.org/10.1016/j.watres.2017.10.057

    Article  CAS  PubMed  Google Scholar 

  114. Pandey A, Srivastava S, Kumar S (2019) Isolation, screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy effluent treatment: a sustainable approach. Biores Technol 293:121998. https://doi.org/10.1016/j.biortech.2019.121998

    Article  CAS  Google Scholar 

  115. Kumar AK, Sharma S, Shah E, Parikh BS, Patel A, Dixit G, Divecha JM (2019) Cultivation of Ascochloris sp. ADW007-enriched microalga in raw dairy wastewater for enhanced biomass and lipid productivity. Int J Environ Sci Technol 16(2):943–954. https://doi.org/10.1007/s13762-018-1712-0

    Article  CAS  Google Scholar 

  116. Passos F, Felix L, Rocha H, de Oliveira Pereira J, de Aquino S (2016) Reuse of microalgae grown in full-scale wastewater treatment ponds: thermochemical pretreatment and biogas production. Biores Technol 209:305–312. https://doi.org/10.1016/j.biortech.2016.03.006

    Article  CAS  Google Scholar 

  117. Chen CY, Kuo EW, Nagarajan D, Ho SH, Dong CD, Lee DJ, Chang JS (2020) Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Biores Technol 302:122814. https://doi.org/10.1016/j.biortech.2020.122814

    Article  CAS  Google Scholar 

  118. Amini M, Khoei ZA, Erfanifar E (2019) Nitrate (NO3) and phosphate (PO43) removal from aqueous solutions by microalgae Dunaliella salina. Biocatal Agric Biotechnol 19:101097. https://doi.org/10.1016/j.bcab.2019.101097

    Article  Google Scholar 

  119. Bolognesi S, Bernardi G, Callegari A, Dondi D, Capodaglio AG (2019) Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-019-00572-5

    Article  Google Scholar 

  120. Sekar M, Mathimani T, Alagumalai A, Chi NTL, Duc PA, Bhatia SK, Pugazhendhi A (2021) A review on the pyrolysis of algal biomass for biochar and bio-oil—bottlenecks and scope. Fuel 283:119190. https://doi.org/10.1016/j.fuel.2020.119190

    Article  CAS  Google Scholar 

  121. Sharma S, Kundu A, Basu S, Shetti NP, Aminabhavi TM (2020) Sustainable environmental management and related biofuel technologies. J Environ Manag 273:111096. https://doi.org/10.1016/j.jenvman.2020.111096

    Article  CAS  Google Scholar 

  122. Wu W, Lei YC, Chang JS (2019) Life cycle assessment of upgraded microalgae-to-biofuel chains. Biores Technol 288:121492. https://doi.org/10.1016/j.biortech.2019.121492

    Article  CAS  Google Scholar 

  123. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17(1):36. https://doi.org/10.1186/s12934-018-0879-x

    Article  PubMed  PubMed Central  Google Scholar 

  124. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41. https://doi.org/10.1007/s11157-010-9214-7

    Article  Google Scholar 

  125. Turkkul B, Deliismail O, Seker E (2020) Ethyl esters biodiesel production from Spirulina sp. and Nannochloropsis oculata microalgal lipids over alumina-calcium oxide catalyst. Renew Energy 145:1014–1019. https://doi.org/10.1016/j.renene.2019.06.093

    Article  CAS  Google Scholar 

  126. Khan SA, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energ Rev 13(9):2361–2372. https://doi.org/10.1016/j.rser.2009.04.005

    Article  CAS  Google Scholar 

  127. Nguyen TT, Lam MK, Uemura Y, Mansor N, Lim JW, Show PL, Lim S (2020) High biodiesel yield from wet microalgae paste via in-situ transesterification: effect of reaction parameters towards the selectivity of fatty acid esters. Fuel 272:117718. https://doi.org/10.1016/j.fuel.2020.117718

    Article  CAS  Google Scholar 

  128. Teo SH, Islam A, Taufiq-Yap YH (2016) Algae derived biodiesel using nanocatalytic transesterification process. Chem Eng Res Des 111:362–370. https://doi.org/10.1016/j.cherd.2016.04.012

    Article  CAS  Google Scholar 

  129. Nautiyal P, Subramanian KA, Dastidar MG (2014) Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction–transesterification process. Fuel 135:228–234. https://doi.org/10.1016/j.fuel.2014.06.063

    Article  CAS  Google Scholar 

  130. Singh J, Tiwari ON, Dhar DW (2019) Overview of carbon capture technology: microalgal biorefinery concept and state-of-the-art. Front Mar Sci 6:29. https://doi.org/10.3389/fmars.2019.00029

    Article  Google Scholar 

  131. Ahmad I, Sharma AK, Daniell H, Kumar S (2015) Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant Biotechnol J 13(4):540–550. https://doi.org/10.1111/pbi.12278

    Article  CAS  PubMed  Google Scholar 

  132. Rajvanshi S, Sharma MP (2012) Micro algae: a potential source of biodiesel. J Sustain Bioenergy Syst 2(03):49. https://doi.org/10.4236/jsbs.2012.23008

    Article  CAS  Google Scholar 

  133. Akubude VC, Nwaigwe KN, Dintwa E (2019) Production of biodiesel from microalgae via nanocatalyzed transesterification process: a review. Mater Sci Energy Technol 2(2):216–225. https://doi.org/10.1016/j.mset.2018.12.006

    Article  Google Scholar 

  134. Smachetti MES, Coronel CD, Salerno GL, Curatti L (2020) Sucrose-to-ethanol microalgae-based platform using seawater. Algal Res 45:101733. https://doi.org/10.1016/j.algal.2019.101733

    Article  Google Scholar 

  135. Kumar AN, Chatterjee S, Hemalatha M, Althuri A, Min B, Kim SH, Mohan SV (2020) Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour Technol 296:122315. https://doi.org/10.1016/j.biortech.2019.122315

    Article  CAS  Google Scholar 

  136. de Carvalho JC, Magalhães AI Jr, de Melo Pereira GV, Medeiros ABP, Sydney EB, Rodrigues C, Soccol CR (2020) Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.122719

    Article  PubMed  Google Scholar 

  137. Phwan CK, Chew KW, Sebayang AH, Ong HC, Ling TC, Malek MA, Show PL (2019) Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae. Biotechnol Biofuels 12(1):191. https://doi.org/10.1186/s13068-019-1533-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. El-Dalatony MM, Kurade MB, Abou-Shanab RA, Kim H, Salama ES, Jeon BH (2016) Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresour Technol 219:98–105. https://doi.org/10.1016/j.biortech.2016.07.113

    Article  CAS  PubMed  Google Scholar 

  139. Phukoetphim N, Salakkam A, Laopaiboon P, Laopaiboon L (2017) Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: logistic and modified Gompertz models. J Biotechnol 243:69–75. https://doi.org/10.1016/j.jbiotec.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  140. Wang Y, Ho SH, Yen HW, Nagarajan D, Ren NQ, Li S, Chang JS (2017) Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv 35(8):1049–1059. https://doi.org/10.1016/j.biotechadv.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  141. Ibrahim MF, Kim SW, Abd-Aziz S (2018) Advanced bioprocessing strategies for biobutanol production from biomass. Renew Sustain Energ Rev 91:1192–1204. https://doi.org/10.1016/j.rser.2018.04.060

    Article  CAS  Google Scholar 

  142. Yeong TK, Jiao K, Zeng X, Lin L, Pan S, Danquah MK (2018) Microalgae for biobutanol production—technology evaluation and value proposition. Algal Res 31:367–376. https://doi.org/10.1016/j.algal.2018.02.029

    Article  Google Scholar 

  143. Birgen C, Berglihn OT, Preisig HA, Wentzel A (2019) Kinetic study of butanol production from mixtures of glucose and xylose and investigation of different pre-growth strategies. Biochem Eng J 147:110–117. https://doi.org/10.1016/j.bej.2019.04.002

    Article  CAS  Google Scholar 

  144. Birgen C, Dürre P, Preisig HA, Wentzel A (2019) Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. Biotechnol Biofuels 12(1):167. https://doi.org/10.1186/s13068-019-1508-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li S, Huang L, Ke C, Pang Z, Liu L (2020) Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. Biotechnol Biofuels 13(1):1–25. https://doi.org/10.1186/s13068-020-01674-3

    Article  CAS  Google Scholar 

  146. Nimbalkar PR, Khedkar MA, Kulkarni RK, Chavan PV, Bankar SB (2019) Strategic intensification in butanol production by exogenous amino acid supplementation: fermentation kinetics and thermodynamic studies. Bioresour Technol 288:121521. https://doi.org/10.1016/j.biortech.2019.121521

    Article  CAS  PubMed  Google Scholar 

  147. Azimi H, Tezel H, Thibault J (2019) Optimization of the in situ recovery of butanol from ABE fermentation broth via membrane pervaporation. Chem Eng Res Des 150:49–64. https://doi.org/10.1016/j.cherd.2019.07.012

    Article  CAS  Google Scholar 

  148. Anwar M, Lou S, Chen L, Li H, Hu Z (2019) Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121972

    Article  PubMed  Google Scholar 

  149. Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206. https://doi.org/10.1016/j.biortech.2017.07.085

    Article  CAS  PubMed  Google Scholar 

  150. Nagarajan D, Lee DJ, Kondo A, Chang JS (2017) Recent insights into biohydrogen production by microalgae—from biophotolysis to dark fermentation. Bioresour Technol 227:373–387. https://doi.org/10.1016/j.biortech.2016.12.104

    Article  CAS  Google Scholar 

  151. Mona S, Kumar SS, Kumar V, Parveen K, Saini N, Deepak B, Pugazhendhi A (2020) Green technology for sustainable biohydrogen production (waste to energy): a review. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.138481

    Article  PubMed  Google Scholar 

  152. Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep 15:63–69. https://doi.org/10.1016/j.btre.2017.06.001

    Article  Google Scholar 

  153. Wang J, Yin Y (2018) Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb Cell Fact 17(1):22. https://doi.org/10.1186/s12934-018-0871-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bayro-Kaiser V, Nelson N (2017) Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy. Photosynth Res 133(1–3):49–62. https://doi.org/10.1007/s11120-017-0350-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bolatkhan K, Kossalbayev BD, Zayadan BK, Tomo T, Veziroglu TN, Allakhverdiev SI (2019) Hydrogen production from phototrophic microorganisms: reality and perspectives. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.01.092

    Article  Google Scholar 

  156. Show KY, Yan Y, Zong C, Guo N, Chang JS, Lee DJ (2019) State of the art and challenges of biohydrogen from microalgae. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121747

    Article  PubMed  Google Scholar 

  157. Zabed HM, Akter S, Yun J, Zhang G, Zhang Y, Qi X (2020) Biogas from microalgae: technologies, challenges and opportunities. Renew Sustain Energ Rev 117:109503. https://doi.org/10.1016/j.rser.2019.109503

    Article  CAS  Google Scholar 

  158. Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214. https://doi.org/10.1016/j.algal.2014.02.001

    Article  Google Scholar 

  159. Buswell AM, Boruff CS (1932) The relation between the chemical composition of organic matter and the quality and quantity of gas produced during sludge digestion. Sewage Works J 4:454–460

    CAS  Google Scholar 

  160. Gan YY, Ong HC, Chen WH, Sheen HK, Chang JS, Chong CT, Ling TC (2020) Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.119944

    Article  Google Scholar 

  161. Li F, Srivatsa SC, Bhattacharya S (2019) A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renew Sustain Energ Rev 108:481–497. https://doi.org/10.1016/j.rser.2019.03.026

    Article  CAS  Google Scholar 

  162. Sotoudehniakarani F, Alayat A, McDonald AG (2019) Characterization and comparison of pyrolysis products from fast pyrolysis of commercial Chlorella vulgaris and cultivated microalgae. J Anal Appl Pyrolysis 139:258–273. https://doi.org/10.1016/j.jaap.2019.02.014

    Article  CAS  Google Scholar 

  163. Plácido J, Bustamante-López S, Meissner KE, Kelly DE, Kelly SL (2019) Microalgae biochar-derived carbon dots and their application in heavy metal sensing in aqueous systems. Sci Total Environ 656:531–539. https://doi.org/10.1016/j.scitotenv.2018.11.393

    Article  CAS  PubMed  Google Scholar 

  164. Nagarajan D, Lee DJ, Chen CY, Chang JS (2020) Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol 302:122817. https://doi.org/10.1016/j.biortech.2020.122817

    Article  CAS  PubMed  Google Scholar 

  165. Stegmann P, Londo M, Junginger M (2020) The circular bioeconomy: its elements and role in European bioeconomy clusters. Resour Conserv Recycl X. https://doi.org/10.1016/j.rcrx.2019.100029

    Article  Google Scholar 

  166. Banu JR, Kavitha S, Gunasekaran M, Kumar G (2020) Microalgae based biorefinery promoting circular bioeconomy-techno economic and life-cycle analysis. Bioresour Technol 302:122822. https://doi.org/10.1016/j.biortech.2020.122822

    Article  CAS  Google Scholar 

  167. Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585. https://doi.org/10.1016/j.biortech.2019.122585

    Article  CAS  PubMed  Google Scholar 

  168. Mohan SV, Hemalatha M, Chakraborty D, Chatterjee S, Ranadheer P, Kona R (2020) Algal biorefinery models with self-sustainable closed loop approach: trends and prospective for blue-bioeconomy. Bioresour Technol 295:122128. https://doi.org/10.1016/j.biortech.2019.122128

    Article  CAS  Google Scholar 

  169. Lam MK, Lee KT (2014) Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production. Energy convers Manag 88:399–410. https://doi.org/10.1016/j.enconman.2014.08.063

    Article  CAS  Google Scholar 

  170. Hossain N, Mahlia TMI, Zaini J, Saidur R (2019) Techno-economics and sensitivity analysis of microalgae as commercial feedstock for bioethanol production. Environ Progr Sustain Energy 38(5):13157. https://doi.org/10.1002/ep.13157

    Article  CAS  Google Scholar 

  171. Kumar A, Saini K, Bhaskar T (2020) Hydochar and biochar: production, physicochemical properties and techno-economic analysis. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123442

    Article  PubMed  Google Scholar 

  172. Pandit PR, Fulekar MH (2019) Biodiesel production from microalgal biomass using CaO catalyst synthesized from natural waste material. Renew Energy 136:837–845. https://doi.org/10.1016/j.renene.2019.01.047

    Article  CAS  Google Scholar 

  173. Gonçalves AL, Alvim-Ferraz M, Martins FG, Simões M, Pires J (2016) Integration of microalgae-based bioenergy production into a petrochemical complex: techno-economic assessment. Energies 9(4):224. https://doi.org/10.3390/en9040224

    Article  CAS  Google Scholar 

  174. Nhat PVH, Ngo HH, Guo WS, Chang SW, Nguyen DD, Nguyen PD, Guo JB (2018) Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? Biores Technol 256:491–501. https://doi.org/10.1016/j.biortech.2018.02.031

    Article  CAS  Google Scholar 

  175. Figueroa-Torres GM, Mahmood WMAW, Pittman JK, Theodoropoulos C (2020) Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochem Eng J 153:107396. https://doi.org/10.1016/j.bej.2019.107396

    Article  CAS  Google Scholar 

  176. Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, Ling TC (2020) Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel 279:118435. https://doi.org/10.1016/j.fuel.2020.118435

    Article  CAS  Google Scholar 

  177. Wu H, Li J, Liao Q, Fu Q, Liu Z (2020) Enhanced biohydrogen and biomethane production from Chlorella sp. with hydrothermal treatment. Energy Convers Manag 205:112373. https://doi.org/10.1016/j.enconman.2019.112373

    Article  CAS  Google Scholar 

  178. Yu KL, Chen WH, Sheen HK, Chang JS, Lin CS, Ong HC, Ling TC (2020) Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment. Energy Renew. https://doi.org/10.1016/j.renene.2020.04.064

    Article  Google Scholar 

  179. Khoo CG, Lam MK, Mohamed AR, Lee KT (2020) Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: effects of operational parameters and products characterization. Environ Res. https://doi.org/10.1016/j.envres.2020.109828

    Article  PubMed  Google Scholar 

  180. Giarola S, Forte O, Lanzini A, Gandiglio M, Santarelli M, Hawkes A (2018) Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale. Appl Energy 211:689–704. https://doi.org/10.1016/j.apenergy.2017.11.029

    Article  Google Scholar 

  181. Hossain N, Zaini J, Mahlia TMI, Azad AK (2019) Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renew Energy 131:617–624. https://doi.org/10.1016/j.renene.2018.07.082

    Article  CAS  Google Scholar 

  182. Purohit P, Chaturvedi V (2018) Biomass pellets for power generation in India: a techno-economic evaluation. Environ Sci Pollut Res 25(29):29614–29632. https://doi.org/10.1007/s11356-018-2960-8

    Article  CAS  Google Scholar 

  183. Choi HI, Lee JS, Choi JW, Shin YS, Sung YJ, Hong ME, Sim SJ (2019) Performance and potential appraisal of various microalgae as direct combustion fuel. Biores Technol 273:341–349. https://doi.org/10.1016/j.biortech.2018.11.030

    Article  CAS  Google Scholar 

  184. Bhushan S, Kalra A, Simsek H, Kumar G, Prajapati SK (2020) Current trends and prospects in microalgae-based bioenergy production. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2020.104025

    Article  Google Scholar 

  185. Gupta S, Pawar SB, Pandey RA (2019) Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Sci Total Environ 687:1107–1126. https://doi.org/10.1016/j.scitotenv.2019.06.115

    Article  CAS  PubMed  Google Scholar 

  186. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275. https://doi.org/10.1006/eesa.1995.1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Khan S, Fu P (2020) Biotechnological perspectives on algae: a viable option for next generation biofuels. Curr Opin Biotechnol 62:146–152. https://doi.org/10.1016/j.copbio.2019.09.020

    Article  CAS  PubMed  Google Scholar 

  188. Kumar AN, Chatterjee S, Hemalatha M, Althuri A, Min B, Kim SH, Mohan SV (2020) Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Biores Technol 296:122315. https://doi.org/10.1016/j.biortech.2019.122315

    Article  CAS  Google Scholar 

  189. Kim EJ, Kim S, Choi HG, Han SJ (2020) Co-production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic sea ice. Biotechnol Biofuels 13(1):1–13. https://doi.org/10.1186/s13068-020-1660-z

    Article  CAS  Google Scholar 

  190. Behera B, Dey B, Balasubramanian P (2020) Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Biores Technol. https://doi.org/10.1016/j.biortech.2020.123392

    Article  Google Scholar 

  191. Khoo CG, Lam MK, Mohamed AR, Lee KT (2020) Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: effects of operational parameters and products characterization. Environ Res 188:109828. https://doi.org/10.1016/j.envres.2020.109828

    Article  CAS  PubMed  Google Scholar 

  192. Azizi K, Moraveji MK, Najafabadi HA (2018) A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sustain Energy Rev 82:3046–3059. https://doi.org/10.1016/j.rser.2017.10.033

    Article  CAS  Google Scholar 

  193. Akbari M, Oyedun AO, Kumar A (2020) Techno-economic assessment of wet and dry torrefaction of biomass feedstock. Energy 207:118287. https://doi.org/10.1016/j.energy.2020.118287

    Article  Google Scholar 

  194. Wang Y, Yang H, Zhang X, Han F, Tu W, Yang W (2020) Microalgal hydrogen production. Small Methods 4(3):1900514. https://doi.org/10.1002/smtd.201900514

    Article  CAS  Google Scholar 

  195. Sun J, Xiong X, Wang M, Du H, Li J, Zhou D, Zuo J (2019) Microalgae biodiesel production in China: a preliminary economic analysis. Renew Sustain Energy Rev 104:296–306. https://doi.org/10.1016/j.rser.2019.01.021

    Article  Google Scholar 

  196. Muhammad G, Alam MA, Mofijur M, Jahirul MI, Lv Y, Xiong W, Xu J (2020) Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renew Sustain Energy Rev 135:110209. https://doi.org/10.1016/j.rser.2020.110209

    Article  Google Scholar 

  197. Saravanan AP, Pugazhendhi A, Mathimani T (2020) A comprehensive assessment of biofuel policies in the BRICS nations: implementation, blending target and gaps. Fuel 272:117635. https://doi.org/10.1016/j.fuel.2020.117635

    Article  CAS  Google Scholar 

  198. Klein BC, Chagas MF, Watanabe MDB, Bonomi A, Maciel Filho R (2019) Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): a case study for sugarcane mills and integrated sugarcane-microalgae biorefineries. Renew Sustain Energy Rev 115:109365. https://doi.org/10.1016/j.rser.2019.109365

    Article  CAS  Google Scholar 

  199. Szulczyk KR, Cheema MA (2020) The economic feasibility and environmental ramifications of biobutanol production in Malaysia. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124953

    Article  Google Scholar 

  200. Mukherjee M, Goswami G, Mondal PK, Das D (2020) Biobutanol as a potential alternative to petroleum fuel: sustainable bioprocess and cost analysis. Fuel 278:118403. https://doi.org/10.1016/j.fuel.2020.118403

    Article  CAS  Google Scholar 

  201. Theuerl S, Herrmann C, Heiermann M, Grundmann P, Landwehr N, Kreidenweis U, Prochnow A (2019) The future agricultural biogas plant in Germany: a vision. Energies 12(3):396. https://doi.org/10.3390/en12030396

    Article  CAS  Google Scholar 

  202. Gu L, Zhang YX, Wang JZ et al (2016) Where is the future of China’s biogas? Review, forecast, and policy implications. Pet Sci 13:604–624. https://doi.org/10.1007/s12182-016-0105-6

    Article  Google Scholar 

  203. Carrasco-Reinado R, Escobar A, Carrera C, Guarnizo P, Vallejo RA, Fernández-Acero FJ (2019) Valorization of microalgae biomass as a potential source of high-value sugars and polyalcohols. LWT 114:108385. https://doi.org/10.1016/j.lwt.2019.108385

    Article  CAS  Google Scholar 

  204. Sanchez J, Curt MD, Robert N, Fernandez J (2019) Biomass resources. In: Lago C, Caldés N, Lechón Y (eds) The role of bioenergy in the bioeconomy. Academic Press, pp 25–111. https://doi.org/10.1016/B978-0-12-813056-8.00002-9

Download references

Acknowledgements

The author acknowledged the library support provided by Lovely Professional University, India.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A. Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. Chemistry Africa 4, 249–275 (2021). https://doi.org/10.1007/s42250-020-00221-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00221-9

Keywords

Navigation