Skip to main content
Log in

Biomass-derived vanadium-based MAX phase nanostructures as stabilizer-free materials for symmetric supercapacitors

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This research work demonstrates the in-situ carbonization technique to fabricate the symmetric supercapacitors using a two-dimensional vanadium carbide-based MAX phase derived from agricultural waste biomass "coconut shell" without using any stabilizer or binary-solvent systems. The electrochemical characterization of the MAX phase using three electrode setups along with insights from tools, such as XRD and SEM analysis. This unique structure contributed to a high specific capacity of 289 C g−1 at a scan rate of 10 mVs−1, accompanied by an impressive capacity retention of approximately 92% even after 2000 cycles, indicating exceptional volumetric stability. Furthermore, well-defined diffusion channels facilitated rapid charging and discharging processes, positioning V2AlC MAX as a promising contender among pseudocapacitive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All required data can be found within the main manuscript file.

References

  1. L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Toward flexible polymer and paper-based energy storage devices. Adv. Mater. (2011). https://doi.org/10.1002/adma.201004134

    Article  PubMed  Google Scholar 

  2. S. Yeasmin, S. Talukdar, D. Mahanta, Paper based pencil drawn multilayer graphene-polyaniline nanofiber electrodes for all-solid-state symmetric supercapacitors with enhanced cyclic stabilities. Electrochim. Acta 389, 138660 (2021). https://doi.org/10.1016/j.electacta.2021.138660

    Article  CAS  Google Scholar 

  3. P. Forouzandeh, V. Kumaravel, S.C. Pillai, Electrode materials for supercapacitors: a review of recent advances. Catalysts 10, 969 (2020). https://doi.org/10.3390/catal10090969

    Article  CAS  Google Scholar 

  4. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  5. Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50

    Article  CAS  Google Scholar 

  6. T.B. Naveen, D. Durgalakshmi, A.K. Kunhiraman, S. Balakumar, R. Ajay Rakkesh, Recent advances in graphene-based micro-supercapacitors: Processes and applications. J. Mater. Res. 36, 4102–4119 (2021). https://doi.org/10.1557/s43578-021-00366-4

    Article  CAS  Google Scholar 

  7. J. Fu, X. Jiang, W. Han, Z. Cao, Enhancing the cycling stability of transition-metal-oxide-based electrochemical electrode via pourbaix diagram engineering. Energy Storage Mater. 42, 252–258 (2021). https://doi.org/10.1016/j.ensm.2021.07.037

    Article  Google Scholar 

  8. N. Angelidis, C.Y. Wei, P.E. Irving, The electrical resistance response of continuous carbon fibre composite laminates to mechanical strain. Compos Part A Appl. Sci. Manuf. 35, 1135–1147 (2004). https://doi.org/10.1016/j.compositesa.2004.03.020

    Article  CAS  Google Scholar 

  9. C.M. Hamm, M. Dürrschnabel, L. Molina-Luna, R. Salikhov, D. Spoddig, M. Farle, U. Wiedwald, C.S. Birkel, Structural, magnetic and electrical transport properties of non-conventionally prepared MAX phases V2AlC and (V/Mn)2AlC. Mater. Chem. Front. 2, 483–490 (2018). https://doi.org/10.1039/C7QM00488E

    Article  CAS  Google Scholar 

  10. W. Jeitschko, H. Nowotny, F. Benesovsky, Kohlenstoffhaltige ternare Verbindungen (H-Phase). Monatshefte For Chemie. 94, 672–676 (1963). https://doi.org/10.1007/BF00913068

    Article  CAS  Google Scholar 

  11. M.W. Barsoum, The MN+1AXN phases: A new class of solids. Prog. Solid State Chem. 28, 201–281 (2000). https://doi.org/10.1016/S0079-6786(00)00006-6

    Article  CAS  Google Scholar 

  12. M.W. Barsoum, T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 79, 1953–1956 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08018.x

    Article  CAS  Google Scholar 

  13. Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Bonding and classification of nanolayered ternary carbides. Phys. Rev. B. 70, 092102 (2004). https://doi.org/10.1103/PhysRevB.70.092102

    Article  CAS  Google Scholar 

  14. D.T. Cuskelly, E.H. Kisi, H.O. Sugo, MAX phase – Alumina composites via exchange reaction in the Mn+1AlCn systems (M=Ti, V, Cr, Nb, or Ta). J. Solid State Chem. 233, 150–157 (2016). https://doi.org/10.1016/j.jssc.2015.10.024

    Article  CAS  Google Scholar 

  15. M. Radovic, M.W. Barsoum, MAX phases: Bridging the gap between metals and ceramics bulletin (n.d.) www.ceramics.org

  16. V.J. Keast, S. Harris, D.K. Smith, Prediction of the stability of the MN+1AXN phases from first principles. Phys. Rev. B. 80, 214113 (2009). https://doi.org/10.1103/PhysRevB.80.214113

    Article  CAS  Google Scholar 

  17. M.W. Barsoum, J. Golczewski, H.J. Seifert, F. Aldinger, Fabrication and electrical and thermal properties of Ti2InC, Hf2InC and (Ti, Hf)2InC. J. Alloys Compd. 340, 173–179 (2002). https://doi.org/10.1016/S0925-8388(02)00107-X

    Article  CAS  Google Scholar 

  18. C. Brüsewitz, I. Knorr, H. Hofsäss, M.W. Barsoum, C.A. Volkert, Single crystal pillar microcompression tests of the MAX phases Ti2InC and Ti4AlN3. Scr. Mater. 69, 303–306 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.002

    Article  CAS  Google Scholar 

  19. R. Venkatkarthick, N. Rodthongkum, X. Zhang, S. Wang, P. Pattananuwat, Y. Zhao, J. Qin, Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc ion batteries. ACS Appl. Energy Mater. 3, 4677–4689 (2020). https://doi.org/10.1021/acsaem.0c00309

    Article  CAS  Google Scholar 

  20. O. Hossein-Zadeh, H. Mirzaee, M. Mohammadian-Semnani, Razavi, Microstructure investigation of V2AlC MAX phase synthesized through spark plasma sintering using two various sources V and V2O5 as the starting materials. Ceram. Int. 45, 23902–23916 (2019). https://doi.org/10.1016/j.ceramint.2019.07.236

    Article  CAS  Google Scholar 

  21. J. Gonzalez-Julian, Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 104, 659–690 (2021). https://doi.org/10.1111/jace.17544

    Article  CAS  Google Scholar 

  22. M. Safarpour, S. Hosseinpour, M. Haddad Irani-nezhad, Y. Orooji, A. Khataee, Fabrication of Ti2SnC-MAX Phase Blended PES Membranes with Improved Hydrophilicity and Antifouling Properties for Oil/Water Separation. Molecules. 27, 8914 (2022). https://doi.org/10.3390/molecules27248914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Liu, J. Niu, Z. Zhang, M. Dou, F. Wang, Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy. 51, 366–372 (2018). https://doi.org/10.1016/j.nanoen.2018.06.037

    Article  CAS  Google Scholar 

  24. Y. Ge, X. Xie, J. Roscher, R. Holze, Q. Qu, How to measure and report the capacity of electrochemical double layers, supercapacitors, and their electrode materials. J. Solid State Electrochem. 24, 3215–3230 (2020). https://doi.org/10.1007/s10008-020-04804-x

    Article  CAS  Google Scholar 

  25. S. Di, L. Gong, B. Zhou, Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors. Mater. Chem. Phys. 253, 123289 (2020). https://doi.org/10.1016/j.matchemphys.2020.123289

    Article  CAS  Google Scholar 

  26. M. Farahmandjou, A. Khodadadi, M. Yaghoubi, Low concentration iron-doped alumina (Fe/Al2O3) nanoparticles using co-precipitation method. J. Supercond. Nov. Magn. 33, 3425–3432 (2020). https://doi.org/10.1007/s10948-020-05569-0

    Article  CAS  Google Scholar 

  27. B. Scheibe, V. Kupka, B. Peplińska, M. Jarek, K. Tadyszak, The Influence of Oxygen Concentration during MAX Phases (Ti3AlC2) Preparation on the α-Al2O3 Microparticles Content and Specific Surface Area of Multilayered MXenes (Ti3C2Tx). Materials. 12, 353 (2019). https://doi.org/10.3390/ma12030353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. Baben, L. Shang, J. Emmerlich, J.M. Schneider, Oxygen incorporation in M2AlC (M=Ti, V, Cr). Acta Mater 60, 4810–4818 (2012). https://doi.org/10.1016/j.actamat.2012.05.011

    Article  CAS  Google Scholar 

  29. R. Thakur, A. VahidMohammadi, J. Moncada, W.R. Adams, M. Chi, B. Tatarchuk, M. Beidaghi, C.A. Carrero, Insights into the thermal and chemical stability of multilayered V2CTx MXene. Nanoscale. 11, 10716–10726 (2019). https://doi.org/10.1039/C9NR03020D

    Article  CAS  PubMed  Google Scholar 

  30. O.D. Leaffer, S. Gupta, M.W. Barsoum, J.E. Spanier, On Raman scattering from selected M2AC compounds. J. Mater. Res. 22, 2651–2654 (2007). https://doi.org/10.1557/JMR.2007.0376

    Article  CAS  Google Scholar 

  31. L. Shi, T. Ouisse, E. Sarigiannidou, O. Chaix-Pluchery, H. Roussel, D. Chaussende, B. Hackens, Synthesis of single crystals of V2AlC phase by high-temperature solution growth and slow cooling technique. Acta Mater. 83, 304–309 (2015). https://doi.org/10.1016/j.actamat.2014.10.018

    Article  CAS  Google Scholar 

  32. M. Hu, Z. Li, T. Hu, S. Zhu, C. Zhang, X. Wang, High-capacitance mechanism for Ti3C2Tx MXene by in Situ electrochemical raman spectroscopy investigation. ACS Nano. 10, 11344–11350 (2016). https://doi.org/10.1021/acsnano.6b06597

    Article  CAS  PubMed  Google Scholar 

  33. Y. Zhang, Designed synthesis and supercapacitor electrode of V2O3@C core-shell structured nanorods with excellent pseudocapacitance in Na2SO4 neutral electrolyte. Chemistryselect. 3, 1577–1584 (2018). https://doi.org/10.1002/slct.201702705

    Article  CAS  Google Scholar 

  34. J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C. 111, 14925–14931 (2007). https://doi.org/10.1021/jp074464w

    Article  CAS  Google Scholar 

  35. H. Sun, L. Mei, J. Liang, Z. Zhao, C. Lee, H. Fei, M. Ding, J. Lau, M. Li, C. Wang, X. Xu, G. Hao, B. Papandrea, I. Shakir, B. Dunn, Y. Huang, X. Duan, Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science (1979) 356, 599–604 (2017). https://doi.org/10.1126/science.aam5852

    Article  CAS  Google Scholar 

  36. R. Kumar, M. Bag, Quantifying capacitive and diffusion-controlled charge storage from 3D Bulk to 2D layered halide perovskite-based porous electrodes for efficient supercapacitor applications. J. Phys. Chem. C. 125, 16946–16954 (2021). https://doi.org/10.1021/acs.jpcc.1c05493

    Article  CAS  Google Scholar 

  37. T. Li, Z. Liu, L. Zhu, F. Dai, L. Hu, L. Zhang, Z. Wen, Y. Wu, Cr2O3 nanoparticles: a fascinating electrode material combining both surface-controlled and diffusion-limited redox reactions for aqueous supercapacitors. J. Mater. Sci. 53, 16458–16465 (2018). https://doi.org/10.1007/s10853-018-2743-0

    Article  CAS  Google Scholar 

  38. H. Shao, Z. Lin, K. Xu, P.-L. Taberna, P. Simon, Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Mater. 18, 456–461 (2019). https://doi.org/10.1016/j.ensm.2018.12.017

    Article  Google Scholar 

  39. X. Pan, Y. Zhao, G. Ren, Z. Fan, Highly conductive VO2 treated with hydrogen for supercapacitors. Chem. Commun 49, 3943 (2013). https://doi.org/10.1039/c3cc00044c

    Article  CAS  Google Scholar 

  40. C. Li, Z. Dai, W. Liu, P. Kantichaimongkol, P. Yu, P. Pattananuwat, J. Qin, X. Zhang, A self-sacrifice template strategy to synthesize Co-LDH/MXene for lithium-ion batteries. Chem. Commun. 57, 11378–11381 (2021). https://doi.org/10.1039/D1CC04492C

    Article  CAS  Google Scholar 

  41. Q. Abbas, L. Wen, M.S. Javed, A. Ahmad, M.S. Nazir, M.A. Assiri, M. Imran, P. Bocchetta, Binder-free porous 3D-ZnO hexagonal-cubes for electrochemical energy storage applications. Materials. 15, 2250 (2022). https://doi.org/10.3390/ma15062250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Z. Pan, F. Cao, X. Hu, X. Ji, A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A. 7, 8984–8992 (2019). https://doi.org/10.1039/c9ta00085b

    Article  CAS  Google Scholar 

  43. J. Sun, X. Du, R. Wu, Y. Zhang, C. Xu, H. Chen, Bundlelike CuCo2O4 microstructures assembled with ultrathin nanosheets as battery-type electrode materials for high-performance hybrid supercapacitors. ACS Appl. Energy Mater. 3, 8026–8037 (2020). https://doi.org/10.1021/acsaem.0c01458

    Article  CAS  Google Scholar 

  44. A. Numan, P. Ramesh Kumar, M. Khalid, S. Ramesh, K. Ramesh, E.M. Shamsudin, Y. Zhan, P. Jagadesh, Facile sonochemical synthesis of 2D porous Co3O4 nanoflake for supercapattery. J. Alloys Comp. 819, 153019 (2020). https://doi.org/10.1016/j.jallcom.2019.153019

    Article  CAS  Google Scholar 

  45. R. Kumar, P. Rai, A. Sharma, 3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications, J. Mater. Chem. A. 9822–9831 (2016). https://doi.org/10.1039/c6ta03519a

  46. Y. Teng, Y. Li, D. Yu, Y. Meng, Y. Wu, X. Zhao, X. Liu, The microwave-assisted hydrothermal synthesis of CoV2O6 and Co3V2O8 with morphology tuning by pH adjustments for supercapacitor applications. ChemistrySelect 4, 956–962 (2019). https://doi.org/10.1002/slct.201803141

    Article  CAS  Google Scholar 

  47. T. Selvam, D. Dhinasekaran, B. Subramanian, A.R. Rajendran, Layered structures of enriched V5+ states of vanadium oxide as a hybrid cathode material for long-cyclable aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces. 15, 30350–30359 (2023). https://doi.org/10.1021/acsami.3c05835

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the SRM Institute of Science and Technology for awarding the SRM fellowship that facilitated the execution of this research. Additionally, recognition is extended to the Department of Science and Technology (DST) for the funding provided under the sanction DST-SERB file no.: EEQ/2023/000314. Furthermore, appreciation is given to the SRM-SCIF, NRC, and PNCF for their support in providing the Instrumentation Facility.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

T.B. Naveen: Conceptualization, Investigation, Methodology, Writing – Original draft, D. Durgalakshmi: Conceptualization, Investigation, Methodology, S. Balakumar: Validation, Review and R. Ajay Rakkesh: Investigation, Supervision, Review & editing, Conceptualization.

Corresponding authors

Correspondence to D. Durgalakshmi or R. Ajay Rakkesh.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveen, T.B., Durgalakshmi, D., Balakumar, S. et al. Biomass-derived vanadium-based MAX phase nanostructures as stabilizer-free materials for symmetric supercapacitors. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00741-x

Keywords

Navigation