Skip to main content
Log in

High-performance multi-response optimization of new nanocomposite coating formulation of zinc reinforced with calcium oxide nanoparticle synthesis from oyster shell via one-step electrodeposition approach

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The effect of electrodeposition parameters on the synthesis of new nanocomposite coating formulations of zinc reinforced with calcium oxide nanoparticles (CaOnp) from oyster shells was studied. The g/l calcium oxide nanoparticles (CaOnp), current density, deposition temperature, and times were the stir electrodeposition parameters, while electrical conductivity, hardness values, and corrosion rate were used as the multi-responses for the study. The experimental results were in good accordance with model prediction values. The optimium conditions were obtained at 10g/lCaOnp, 80 °C deposition temperature, 1.5A/cm2 current density, and 15-min deposition time. The smaller crystallite size of the deposited sample is the main reason for the lower corrosion resistance and higher hardness values obtained. It was established that waste oysters can be used for the electrodeposition of mild steel to enhance corrosion resistance and hardness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting this study's conclusions is included in the publication.

References

  1. V.S. Aigbodion, Explicit simultaneous enhancement of adhesion strength and wear resistance of functional value-added epoxy-functionalized rice husk ash nanoparticle composite coating. Inter. J. of Adva. Manuf. Techno 109, 2205–2214 (2020). https://doi.org/10.1007/s00170-020-05758-0

    Article  Google Scholar 

  2. V.S. Aigbodion, S.I. Neife, I.Y. Suleiman, Surface modification of mild steel by co-deposition using Zn-ZnO-Ant hill particulate composite coating in simulated seawater, Proceed. of the Instit. of Mech. Eng., Part M: J. of Eng. for the Marit. Envir. (2019). https://doi.org/10.1177/1475090218792382

  3. R. Winand, in Modern electroplating, 5th edn.. Electrodeposition of zinc and zinc alloys (JohnWiley & Sons, Inc., Hoboken, NJ, USA, 2011), pp. 285–307

    Chapter  Google Scholar 

  4. L.M. Muresan, in Handbook of nanoelectrochemistry. Electrodeposited Zn-nanoparticles composite coatings for corrosion protection of steel (Springer International Publishing, Cham, Switzerland, 2016), pp. 333–353

    Chapter  Google Scholar 

  5. P.A.I. Popoola, N. Malatji, O.S. Fayomi, in Applied Studies of Coastal and Marine Environments. Fabrication and properties of zinc composite coatings for mitigation of corrosion in coastal and marine zone, vol 32 (InTech, London, UK, 2016), pp. 137–144

    Google Scholar 

  6. B.M. Praveen, T.V. Venkatesha, Generation and corrosion behavior of Zn-nano sized carbon black composite coating. Int. J. Electrochem. Sci. 4, 258–266 (2009)

    Article  CAS  Google Scholar 

  7. M.K. Punith Kumar, M.P. Singh, C. Srivastava, Electrochemical behavior of Zn–graphene composite coatings. RSC Adv. 5, 25603–25608 (2015)

    Article  CAS  Google Scholar 

  8. M.Y. Rekha, C. Srivastava, Microstructure and corrosion properties of zinc-graphene oxide composite coatings. Corros. Sci. 152, 234–248 (2019)

    Article  Google Scholar 

  9. N. Malatji, A.P.I. Popoola, O.S.I. Fayomi, C.A. Loto, Multifaceted incorporation of Zn-Al2O3/Cr2O3/SiO2 nanocomposite coatings: anti-corrosion, tribological, and thermal stability. Int. J. Adv. Manuf. Technol. 82, 1335–1341 (2016)

    Article  Google Scholar 

  10. K. Vathsala, T.V. Venkatesha, Zn–ZrO2 nanocomposite coatings: electrodeposition and evaluation of corrosion resistance. Appl. Surf. Sci. 257, 8929–8936 (2011)

    Article  CAS  Google Scholar 

  11. G. Roventi, Electrodeposition of Zn-Ni-ZrO2, Zn-Ni-Al2O3 and Zn-Ni-SiC nanocomposite coatings from an alkaline bath. Int. J. Electrochem. Sci. 663–678 (2017)

  12. F.Z. ZhuanghuaYu, J. Wang, Q. Shao, A.A. Gaber, A.M. Mersal, M.M. Ibrahim, Z.M. El-Bahy, Y. Li, M. Huang, Z. Guo, Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog. Org. Coat. 168, 106875 (2022)

    Article  Google Scholar 

  13. O. Hammami, L. Dhouibi, P. Berçot, E.M. Rezrazi, E. Triki, Study of Zn-Ni alloy coatings modified by nano-SiO2 particles incorporation. Int. J. Corros. 2012, 301392 (2012)

    Article  Google Scholar 

  14. J. Cai, V. Murugadoss, J. Jiang, X. Gao, Z. Lin, M. Huang, J. Guo, S.A. Alsareii, H. Algadi, M. Kathiresan, Waterborne polyurethane and its nanocomposites: a mini-reviewfor anti-corrosion coating, flame retardancy, and biomedicalapplications. Adv. Compos. 5(11). https://doi.org/10.1007/s42114-022-00473-8

  15. L.M. Tavares, E.M. da Costa, J.J. de Oliveira Andrade, R. Hubler, B. Huet, effect of calcium carbonate on low carbon steel corrosion behavior in saline CO2 high pressure environments. Appl. Surf. Sci. 359, 143–152 (2015)

    Article  CAS  Google Scholar 

  16. Z. Yan, S. Wang, J. Bi, Q. He, H. Song, I.H. El Azab, S.M. El-Bahy, A.Y. Elnaggar, M. Huang, M.H. Mahmoud, J. Wang, Strengthening waterborne acrylic resin modified with trimethylolpropane triacrylate and compositing with carbon nanotubes for enhanced anticorrosion. Adv. Compos. Hybrid Mater. 5, 2116–2130 (2022)

    Article  CAS  Google Scholar 

  17. V.S. Aigbodion, E.T. Akinlabi, Explicit microstructural evolution and electrochemical performance of zinc eggshell particles composite coating on mild steel. Surf. Interf. 17, 100387 (2019). https://doi.org/10.1016/j.surfin.2019.100387

    Article  CAS  Google Scholar 

  18. H. Du, X. Ren, D. Pan, Y. An, Y. Wei, X. Liu, Z. Guo, Effect of phosphating solution pH value on the formation of phosphate conversion coatings for corrosion behaviors on AZ91D. Adv. Compos. Mater. 4(2), 401–414 (2021). https://doi.org/10.1007/s42114-021-00222-3

    Article  CAS  Google Scholar 

  19. Q. Zhu, Y. Huang, Y. Li, M. Zhou, S. Xu, X. Liu, Z. Guo, Aluminum dihydric tripolyphosphate/polypyrrole-functionalized graphene oxide waterborne epoxy composite coatings for impermeability and corrosion protection performance of metals. Adv. Compos 4(3), 780–792 (2021). https://doi.org/10.1007/s42114-021-00265-6

    Article  CAS  Google Scholar 

  20. G. Qiao, S. Wang, X. Wang, X. Chen, X. Wang, H. Cui, Ni/Co/black phosphorus nanocomposites for Q235 carbon steel corrosion-resistant coating. Adv. Compos (2021). https://doi.org/10.1007/s42114-021-00268-3

  21. M. Farahmandian, M. Saidi, S. Fazlinejad, Synthesis and characterization of nickel–cobalt spin coatings reinforced with carbon nanotubes: microstructural properties, microhardness, and corrosion resistance. Adv. Compos. 5(2), 1490–1507 (2021). https://doi.org/10.1007/s42114-021-00220-5

    Article  CAS  Google Scholar 

  22. T.J. Tuaweri, Influence of process parameters on the cathode current efficiency of Zn/SiO2 electrodeposition. Int. J. Mech. Eng. Appl. 1, 93 (2013)

    Google Scholar 

  23. T.J. Tuaweri, G.D. Wilcox, Behaviour of Zn-SiO2 electrodeposition in the presence of N. Surf. Coat. Technol. 200, 5921–5930 (2006)

    Article  CAS  Google Scholar 

  24. T. Ohgai, K. Ogushi, K. Takao, Morphology control of Zn-SiO2 composite films electrodeposited from aqueous solution containing quaternary ammonium cations. J. Phys. Conf. Ser. 417, 012006 (2013)

    Article  CAS  Google Scholar 

  25. A.P.I. Popoola, O.S.I. Fayomi, Effect of some process variables on zinc coated low carbon steel substrates. Sci. Res. Essays 6(20), 4264–4272 (2011)

    Article  CAS  Google Scholar 

  26. T.J. Tuaweri, E.M. Adigio, P.P. Jombo, A study of process parameters for zinc electrodeposition from a sulphate bath. Int. J. Eng. Sci. 2, 2319–6734 (2013)

    Google Scholar 

  27. O.S. Fayomi, V.R. Tau, A.P.I. Popoola, B.M. Durodola, O. Ajayi, C.A. Loto, O. Inegbenebor, A Influence of plating parameter and surface morphology on mild steel. J. Mater. Environ. Sci 2(3), 271–280 (2011)

    CAS  Google Scholar 

  28. M. Kul, K.O. Oskay, F. Erden, E. Akça, R. Katırcı, E. Köksal, Evindar Akıncı Effect of Process Parameters on the Electrodeposition of Zinc on 1010 Steel: Central Composite Design Optimization. Int. J. Electrochem. Sci. 15, 9779–9795 (2020). https://doi.org/10.20964/2020.10.19

    Article  CAS  Google Scholar 

  29. S. Tongwanichniyom, T. Pattamapitoon, Napimporn Sangvichien and Somkiat Phornphisutthimas Production of calcium oxide from waste oyster shells for a value-added application of antibacterial, Eco. Env. Cons. 27(2), 539–547 (2021)

    Google Scholar 

  30. S.M. Adams, E. Atikpo, V.S. Aigbodion, CaCO3 derived from eggshell waste for improving the hardness values and wear behavior of composite coating on mild steel via co-deposition. Int. J. Adv. Manuf. Technol. 119, 5483–5496 (2022)

    Article  Google Scholar 

  31. H.M. Muzamma, H. Ma, H.M. Liang, Z. Gao, J. Cao, C. Wang, et al., Fabrication of cerium myristate coating for a mechanochemically robust modifier-free superwettability system to enhance the corrosion resistance on 316L steel by one-step electrodeposition. Surf. Coat. Technol. 125970 (2020). https://doi.org/10.1016/j.surfcoat.2020.1259

  32. B. Stalin, P. Ramesh Kumar, M. Ravichandran, M. Siva Kumar, M. Meignanamoorthy, Optimization of wear parameters using Taguchi grey relational analysis and ANN-TLBO algorithm for Silicon Nitride filled AA6063 matrix composites. Mater. Res. Expr. (2019). https://doi.org/10.1088/2053-1591/ab3d90

  33. S. Arora, B. Sharma, C. Srivastava, ZnCo-carbon nanotube composite coating with enhanced corrosion resistance behavior. Surf. Coat. Technol. 126083 (2020). https://doi.org/10.1016/j.surfcoat.2020.126083

  34. Y.P. Deepthi, M. Krishna, Optimization of electroless copper coating parameters on graphite particles using Taguchi And grey relational analysis. Materials Today: Proceedings 5(5), 12077–12082 (2018). https://doi.org/10.1016/j.matpr.2018.02.183

    Article  CAS  Google Scholar 

  35. S. Anwar, F. Khan, Y. Zhang, S. Caines, Zn composite corrosion resistance coatings: what works and what does not work? J. Loss Prev. Process Ind. 69 (2021)

  36. J.H. Liu, J.X. Yan, Z.L. Pei, J. Gong, C. Sun, Effects of Mo content on the grain size, hardness and anti–wear performance of electrodeposited nanocrystalline and amorphous Ni–Mo alloys. Surf. Coat. Technol. 126476 (2020). https://doi.org/10.1016/j.surfcoat.2020.1264

  37. A. Premkumar, A. Elayaperumal, S. Arulvel, M.S. Jagatheeshwaran, Partial dissolution of precipitated-calcium carbonate (P-CaCO3) in electroless nickel-phosphorus (Ni-P) coating and its surface characterization. Mater. Res. Expr. 6(6), 066409 (2019). https://doi.org/10.1088/2053-1591/ab0934

Download references

Acknowledgements

The authors hereby appreciate and acknowledge the Africa Centre of Excellence for Sustainable Power and Energy Development, ACE-SPED, University of Nigeria, Nsukka; the Energy materials research group, University of Nigeria, Nsukka, Nigeria; and the Faculty of Engineering and Built Environment, University of Johannesburg, Auckland Park, South Africa for their supports.

Author information

Authors and Affiliations

Authors

Contributions

They contribute 100% to the study work’s development, from experimentation to analysis.

Corresponding author

Correspondence to Anianwu Franklin Onyekachi.

Ethics declarations

Ethics approval

Because this experiment does not involve people or animals, no ethics committee approval is required.

Consent to participate

Because this study does not include people or animals, no permission is required to participate.

Publishing permission

The writers grant their permission for the work to be published by the publisher.

Consent for publication

The authors give the publisher the consent to publish the work.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, S.M., Onyekachi, A.F. & Aigbodion, V.S. High-performance multi-response optimization of new nanocomposite coating formulation of zinc reinforced with calcium oxide nanoparticle synthesis from oyster shell via one-step electrodeposition approach. emergent mater. 6, 973–986 (2023). https://doi.org/10.1007/s42247-023-00458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00458-3

Keywords

Navigation