Skip to main content
Log in

Understanding the anticorrosion and ice adhesion of superhydrophobic Zn-CaO nanoparticles derived from oyster composite coating

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Zn-CaO nanoparticles were electropositively coated on mild steel substrates in order to attain superhydrophobic properties. The electrodeposited zinc films exhibit porous, round structures according to SEM morphological properties. The phases were identified using X-ray diffraction (XRD). The Zn-CaO nanoparticle-coated mild steel exhibits superhydrophobic properties with a 155° contact angle and is more corrosion-resistant than mild steel. The ice adhesion strength of the Zn-CaO nanoparticle-coated mild steel was 5.5 times higher than that of mild steel. It has been established that waste oyster shells can be used in the production of superhydrophobic zinc coatings for reducing ice adhesion and corrosion resistance in maritime conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhang, J. Liang, L. Jun, P. Baixing, P. Zhenjun, Preparation of superhydrophobic zinc coating for corrosion protection. Coll. and Surf. A 454, 113–118 (2014). https://doi.org/10.1016/j.colsurfa.2014.04.029

    Article  CAS  Google Scholar 

  2. X.B. Lu, J.H. Zhou, Y.H. Zhao, Y. Qiu, J.H. Li, Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chem. Mater. 20, 3420–3424 (2008). https://doi.org/10.1021/cm800045h

    Article  CAS  Google Scholar 

  3. Z. Honggang, N. Zhang, F. Fengzhou, Synergistic effect of surfactant and saccharin on dispersion and crystal refinement for electrodeposition of nanocrystalline nickel/graphene oxide composite. Surf. Coat. Technol. 402, 126292 (2020). https://doi.org/10.1016/j.surfcoat.2020.126292

    Article  CAS  Google Scholar 

  4. N.A. Polyakov, I.G. Botryakova, V.G. Glukhov, G.V. Red'kina, Y.I. Kuznetsov, Formation and anticorrosion properties of superhydrophobic zinc coatings on steel. Chem. Eng. J. 382, 567–581 (2020). https://doi.org/10.1016/j.cej.2020.127775

    Article  CAS  Google Scholar 

  5. K. Tadanaga, J. Morinaga, A. Matsuda, T. Minami, Superhydrophobic superhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater. 12, 590–592 (2000). https://doi.org/10.1021/cm990643h

    Article  CAS  Google Scholar 

  6. M. Manca, A. Cannavale, L.D. Marco, A.S. Arico, R. Cingolani, G. Gigli, Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol-gel processing. Langmuir 25, 6357–6362 (2009). https://doi.org/10.1021/la804166t

    Article  CAS  Google Scholar 

  7. D. Han, A.J. Steckl, Superhydrophobic and oleophobic fibers by coaxial electrospinning. Langmuir 25, 9454–9462 (2009). https://doi.org/10.1021/la900660v

    Article  CAS  Google Scholar 

  8. T. Ishizaki, M. Sakamoto, Facile formation of biomimetic color-tuned superhydrophobic magnesium alloy with corrosion resistance. Langmuir 27(6), 2375–2381 (2011). https://doi.org/10.1021/la1051029

    Article  CAS  Google Scholar 

  9. C.Y. Jeong, C.H. Choi, Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency. ACS Appl. Mater. Interfaces 4, 842–848 (2012). https://doi.org/10.1021/am201514n

    Article  CAS  Google Scholar 

  10. M. He, H. Li, J. Wang, Y. Song, Comment on “Metal-insulator transition without structural phase transition in V2O5 film”. Appl. Phys. Lett. 98, 131907–131901 (2011). https://doi.org/10.1063/1.4804203

    Article  CAS  Google Scholar 

  11. X. Zhang, F. Shi, X. Yu, H. Liu, Y. Fu, Z.Q. Wang, L. Jiang, X.Y. Li, Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward superhydrophobic surface. J. Am. Chem. Soc. 126, 3064–3065 (2004). https://doi.org/10.1021/ja0398722

    Article  CAS  Google Scholar 

  12. T. Darmanin, E.T. Givenchy, S. Amigoni, F. Guittard, Superhydrophobic surfaces by electrochemical processes. Adv. Mater. 25, 1378–1394 (2013). https://doi.org/10.1002/adma.201204300

    Article  CAS  Google Scholar 

  13. Y. Lu, J.L. Song, X. Liu, W.J. Xu, Y.J. Xing, Z.F. Wei, Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method. ACS Sustain. Chem. Eng. 1, 102–109 (2013). https://doi.org/10.1021/sc3000527

    Article  CAS  Google Scholar 

  14. W.J. Xu, J.L. Song, J. Sun, Y. Lu, Z.Y. Yu, Rapid fabrication of large-area, corrosion resistant superhydrophobic Mg alloy surfaces. ACS Appl. Mater. Interfaces 3, 4404–4414 (2011). https://doi.org/10.1021/am2010527

    Article  CAS  Google Scholar 

  15. J.F. Ou, W.H. Hu, M.S. Xue, F.J. Wang, W. Li, Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection. ACS Appl. Mater. Interfaces 5, 3101–3107 (2013). https://doi.org/10.1021/am4000134

    Article  CAS  Google Scholar 

  16. S.A. Kulinich, M. Farzaneh, Ice adhesion on superhydrophobic surfaces. Appl. Surf. Sci. 255(18), 8153–8157 (2009). https://doi.org/10.1016/j.apsusc.2009.05.033

    Article  CAS  Google Scholar 

  17. A. Lazauskas, A. Guobienė, I. Prosyčevas, V. Baltrušaitis, V. Grigaliūnas, P. Narmontas, L. Baltrusaitis, Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles. Mater. Charact. 82, 9–16 (2013). https://doi.org/10.1016/j.matchar.2013.04.017

    Article  CAS  Google Scholar 

  18. S. Farhadi, M. Farzaneh, S.A. Kulinich, Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257(14), 6264–6269 (2011). https://doi.org/10.1016/j.apsusc.2011.02.057

    Article  CAS  Google Scholar 

  19. Z. Zheng, C. Liao, Y. Xia, W. Chai, C. Xie, W. Zhang, Y. Liu, Facile fabrication of robust, biomimetic and superhydrophobic polymer/graphene-based coatings with self-cleaning, oil-water separation, anti-icing and corrosion resistance properties. Coll. Surf. A 627, 127164 (2021). https://doi.org/10.1016/j.colsurfa.2021.12716

    Article  CAS  Google Scholar 

  20. B. Zhang, M. Qiao, W. Xu, B. Hou, All-organic superhydrophobic coating with anticorrosion, anti-icing capabilities and prospective marine atmospheric salt-deliquesce self-coalesce protective mechanism. J. Ind. Eng. Chem. 115(25), 430–439 (2022). https://doi.org/10.1016/j.jiec.2022.08.028

    Article  CAS  Google Scholar 

  21. E. Farahani, A.C. Liberati, C. Moreau, A. Dolatabadi, P. Stoyanov, Comparative evaluation of the shear adhesion strength of ice on PTFE solid lubricant. Lubricants 11, 105 (2023). https://doi.org/10.3390/lubricants11030105

    Article  CAS  Google Scholar 

  22. A. Ijaz, A. Miko, A.L. Demirel, Low ice adhesion anti-icing coatings based on PEG release from mesoporous silica particle loaded SBS. Mater. Adv. 3, 8168–8177 (2022). https://doi.org/10.1039/d2ma00661h

    Article  CAS  Google Scholar 

  23. M.E. Mohamed, B.A. Abd-El-Nabey, Corrosion performance of a steel surface modified by a robust graphene-based superhydrophobic film with hierarchical roughness. J. Mater. Sci. 57, 11376–11391 (2022). https://doi.org/10.1007/s10853-022-07325-2

    Article  CAS  Google Scholar 

  24. V. Sharma, M.S. Goyat, A. Hooda, J.K. Pandey, A. Kumar, P.K. Bhargav, P. K., Recent progress in nano-oxides and CNTs based corrosion resistant superhydrophobic coatings: a critical review. Prog. Org. Coat. 140, 105512 (2020). https://doi.org/10.1016/j.porgcoat.2019.105512

    Article  CAS  Google Scholar 

  25. T. Nonami, H. Hase, K. Funakoshi, Apatite-coated titanium dioxide photocatalyst for air purification. Catal. Today 96, 113–118 (2004). https://doi.org/10.1016/j.cattod.2004.06.112

    Article  CAS  Google Scholar 

  26. Y. Ohko, S. Saitoh, T. Tatsuma, A. Fujishima, Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel. J. Electrochem. Soc. 148, B24–B28 (2011). https://doi.org/10.1149/1.1339030

    Article  Google Scholar 

  27. Q. Huang, Y. Yang, R. Hu, C. Lin, L. Sun, E.A. Vogler, Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO2-nanotube-coated 316L stainless steel. Colloids Surf. B: Biointerfaces 125, 134–141 (2015). https://doi.org/10.1016/j.colsurfb.2014.11.028

    Article  CAS  Google Scholar 

  28. V.S. Aigbodion, S.I. Neife, I.Y. Suleiman, Surface modification of mild steel by co-deposition using Zn-ZnO-Ant hill particulate composite coating in simulated seawater. Proceed. Instit. Mech. Eng., Part M: J. Eng. Marit. Envir. 233(5), 3456 (2019). https://doi.org/10.1177/1475090218792382

    Article  Google Scholar 

  29. V.S. Aigbodion, E.T. Akinlabi, Explicit microstructural evolution and electrochemical performance of zinc eggshell particles composite coating on mild steel. Surf. Interf. 17, 100387 (2019). https://doi.org/10.1016/j.surfin.2019.100387

    Article  CAS  Google Scholar 

  30. S.M. Adams, F.O. Anianwu, V.S. Aigbodion, Ecofriendly new nanocomposites coating formulation of zinc reinforced with calcium oxide nanoparticles synthesis from oyster shell. J. Indian Chem. Soc. 99(8), 100609 (2022). https://doi.org/10.1016/j.jics.2022.100609

    Article  CAS  Google Scholar 

  31. S.M. Adams, F.O. Anianwu, V.S. Aigbodion, High-performance multi-response optimization of new nanocomposite coating formulation of zinc reinforced with calcium oxide nanoparticle synthesis from oyster shell via one-step electrodeposition approach. Emergent Mater. (2023). https://doi.org/10.1007/s42247-023-00458-3

  32. A.B.D. Cassie, S. Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944)

    Article  CAS  Google Scholar 

  33. F. Berger, J. Delhalle, Z. Mekhalif, Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim. Acta 54, 6464–6471 (2009). https://doi.org/10.1016/j.electacta.2009.03.064

    Article  CAS  Google Scholar 

  34. T. Ishizaki, Y. Masuda, M. Sakamoto, Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution. Langmuir 27, 4780–4788 (2011). https://doi.org/10.1021/la2002783

    Article  CAS  Google Scholar 

  35. A. Bakkar, V. Neubert, Electrodeposition onto magnesium in air and water stable ionic liquids: from corrosion to successful plating. Electrochem. Commun. 9, 2428–2435 (2007). https://doi.org/10.1016/j.elecom.2007.07.010

    Article  CAS  Google Scholar 

  36. H. Liu, S. Szunerits, W. Xu, R. Boukherroub, Preparation of superhydrophobic coatings on zinc as effective corrosion barriers. ACS Appl. Mater. Interfaces 1, 1150–1153 (2009). https://doi.org/10.1021/am900100q

    Article  CAS  Google Scholar 

  37. H. Chen, F. Wang, H. Fan, R. Hong, W. Li, Construction of MOF-based superhydrophobic composite coating with excellent abrasion resistance and durability for self-cleaning, corrosion resistance, anti-icing, and loading-increasing research. Chem. Eng. J. 456, 127343 (2020). https://doi.org/10.1016/j.cej.2020.127343

    Article  CAS  Google Scholar 

  38. L.E. Morón, A. Méndez, F. Castaneda, J.G. Flores, L. Ortiz-Frade, Y. Meas, G. Trejo, Electrodeposition and corrosion behavior of Zn coatings formed using as brighteners arene additives of different structure. Surf. Coat. Technol. 205, 4985–4992 (2011). https://doi.org/10.1016/j.surfcoat.2011.04.090

    Article  CAS  Google Scholar 

  39. I.B. Obot, N.O. Obi-Egbedi, A.O. Eseola, Anticorrosion potential of 2-Mesityl- 1H-imidazo[4,5-f][1,10]-phenanthroline on mild steel in sulfuric acid solution: experimental and theoretical study. Ind. Eng. Chem. Res. 50, 2098–2110 (2011). https://doi.org/10.1021/ie102034c

    Article  CAS  Google Scholar 

  40. A. Safaee, D.K. Sarkar, M. Farzaneh, Superhydrophobic properties of silver-coated films on copper surface by galvanic exchange reaction. Appl. Surf. Sci. 254, 2493–2498 (2008). https://doi.org/10.1016/j.apsusc.2007.09.073

    Article  CAS  Google Scholar 

  41. Z. Ghalmi, M. Farzaneh, Durability of nanostructured coatings based on PTFE nanoparticles deposited on porous aluminum alloy. Appl. Surf. Sci. 314, 564–569 (2014). https://doi.org/10.1016/j.apsusc.2014.05.194

    Article  CAS  Google Scholar 

  42. T. Rezayi, M.H. Entezari, Toward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition. J. Colloid Interface Sci. 463, 37–45 (2016). https://doi.org/10.1016/j.jcis.2015.10.029

    Article  CAS  Google Scholar 

  43. Z. Wang, A. Yang, X. Tan, Y. Tu, S. Sabin, P. Xiang, X. Chen, A veil-over-sprout micro-nano PMMA/SiO2 superhydrophobic coating with impressive abrasion, icing, and corrosion resistance. Coll. and Surf. A 601, 124998 (2020). https://doi.org/10.1016/j.colsurfa.2020.12499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors at this moment appreciate and acknowledge the Africa Centre of Excellence for Sustainable Power and Energy Development, ACE-SPED, University of Nigeria, Nsukka; Energy Materials Research Group, University of Nigeria, Nsukka, Nigeria; and Faculty of Engineering and Built Environment, University of Johannesburg, Auckland Park, South Africa, for their supports.

Availability of data and materials

The authors confirm that the data supporting this study’s conclusions are included in the publication.

Author information

Authors and Affiliations

Authors

Contributions

They contribute 100 percent to the study work’s development, from experimentation to analysis.

Corresponding author

Correspondence to V. S. Aigbodion.

Ethics declarations

Ethics approval

Because this experiment does not involve people or animals, no ethics committee approval is required.

Consent to participate

Because this study does not include people or animals, no permission is required to participate.

Consent for publication

The authors grant permission for the work to be published by the publisher.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aigbodion, V.S., Royani, A. Understanding the anticorrosion and ice adhesion of superhydrophobic Zn-CaO nanoparticles derived from oyster composite coating. emergent mater. 6, 1641–1649 (2023). https://doi.org/10.1007/s42247-023-00541-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00541-9

Keywords

Navigation