Skip to main content

Advertisement

Log in

Theoretical Investigations on Mechanical and Ultrasonic Characteristics of Gallium Nitride Semiconductor under High Pressure

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The impact of pressure on the elastic and acoustic characteristics of the gallium nitride semiconductor are. analyzed using the L-J potential approach. This model is applied to evaluate the 2nd- and 3rd-order elastic parameters (SOECs and TOECs) for GaN semiconductor. Here in this work, the elastic constants are studied with pressure, and it is noticed that the elastic moduli of gallium nitride semiconductor increase monotonically as pressure increases. We also report that, the hexagonal GaN semiconductor is mechanically stable with pressures according to Born’s elastic stability criteria in the present work. The Voigt–Reuss–Hill method is used to compute elastic parameters such as Young’s modulus, bulk modulus, shear modulus, and Poisson’s ratio under the different pressures in the present work. The hardness, thermal conductivity, anisotropy constants, ultrasonic velocity, and melting point of GaN semiconductor are evaluated using estimated SOECs in the present work. The second-order coefficients are a tool for calculating acoustic velocities along the z-axis for the operating pressure that has been specified. The computation is also satisfactory in estimating the ultrasonic attenuation, Debye temperature, and thermal conductivity k (min) under various pressures (0–50 GPa) in this research work. GaN is important to solar designs because of its ability to offer significantly improved performance while reducing the energy and the physical space needed to deliver that performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Rais-Zadeh, V.J. Ghokhale, A. Anshari, M. Faucher, D. Theron, Y. Cordier, L. Buchaillot, J. Micro electrochemical Syst. 23, 1252 (2014)

    Article  CAS  Google Scholar 

  2. C. Eun-Ae, K.J. Chang, Physica B 401, 319 (2007)

    Google Scholar 

  3. B. Luo, X. Wu, G. Li, Int. J. Mod. Phys. B 28, 1450183 (2014)

    Article  CAS  Google Scholar 

  4. S. Li, C. Ouyang, Phys. Lett. A 336, 145 (2005)

    Article  CAS  Google Scholar 

  5. X. Gao, B. Man, C. Zhang, J. Leng, Y. Xu, Q. Wang, M. Zhang, Y. Meng. J. Alloys Compd. 699, 596 (2017)

    Article  CAS  Google Scholar 

  6. M. Sawicki, T. Devillers, S. Galeski, C. Simserides, S. Dobkowska, B. Faina, J.A. Msewski, Phys. Rev. B 85, 205204 (2012)

    Article  Google Scholar 

  7. S. Stefanowicz, G. Kunert, C. Simserides, J.A. Msewski, C. Kruse, W. Stefanowicz, S. Figge, T. Li, R. Jakiela, K.N. Trohidou, Phys. Rev. B 88, 081201 (2013)

    Article  Google Scholar 

  8. C. Simserides, J.A. Mazewski, K.N. Trohidou, T. Dietl, EPJ Web Conf. 75, 01003 (2014)

    Article  CAS  Google Scholar 

  9. S. Saib, N. Bouarissa, Solid State Electron. 50, 763 (2006)

    Article  CAS  Google Scholar 

  10. S.-H. Wei, A. Zunger, Phys. Rev. B 60, 5404 (1996)

    Article  Google Scholar 

  11. S.I. Simak, U. Haussermann, R. Ahuja, S. Lidin, B. Johansson, Phys. Rev. Lett. 85, 142 (2000)

    Article  CAS  Google Scholar 

  12. S. Dound, N. Biound, N. Bouarissa, Mater. Sci. Semi-cond. Process. 31, 124 (2015)

    Article  Google Scholar 

  13. D.K. Panday, P.K. Yadawa, R.R. Yadav, Mater. Lett. 61, 5194 (2007)

    Article  Google Scholar 

  14. P.K. Yadawa, Arab. J. Sci. Eng. 37, 255 (2012)

    Article  CAS  Google Scholar 

  15. A.K. Prajapati, S. Rai, P.K. Yadawa, MAPAN-JMSI 37, 13 (2022)

    Google Scholar 

  16. D.K. Pandey, S. Pandey, Sciyo Croatia 111, 397 (2010)

    Google Scholar 

  17. S.O. Pillai, Solid State Physics, seventh ed., (New Age International Publisher, 2005), pp. 100–111

  18. D. Singh, D.K. Pandey, P.K. Yadawa, A.K. Yadav, Cryogen 16, 12 (2009)

    Article  Google Scholar 

  19. P.K. Yadawa, J. Pure Appl. Ultrasonics 40, 16 (2018)

    Google Scholar 

  20. P.K. Yadawa, D. Singh, D.K. Panday, R.R. Yadav, Open Acoust. J. 2, 61 (2009)

    Article  Google Scholar 

  21. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)

    Article  Google Scholar 

  22. N. Turkdal, E. Deligoz, H. Ozisik, Ph. Transit. 90, 598 (2017)

    Article  CAS  Google Scholar 

  23. P.F. Weck, E. Kim, V. Tikare, Dalton Trans. 44, 18769 (2015)

    Article  CAS  Google Scholar 

  24. T. Morelli Donald, A. Slack Glen, J. Goela, XVIII Edn (Springer Publisher, 2006), p. 37

  25. M.E. Fine, L.D. Brown, H.L. Marcus, Scr. Metall. 18, 951 (1984)

    Article  CAS  Google Scholar 

  26. Z. Usman, C. Cao, W.S. Khan, J. Phys. Chem. A 115, 14502 (2011)

    Article  CAS  Google Scholar 

  27. S. Rai, N. Chaurasiya, P.K. Yadawa, Phys. Chem. Solid State 22, 687 (2021)

    Article  CAS  Google Scholar 

  28. X.K. Liu, W. Zhou, X. Liu, S.M. Peng, RSC Adv. 5, 59648 (2015)

    Article  CAS  Google Scholar 

  29. A.L. Ivanovskii, Int. J. Refract. Met. Hard Mater 36, 179 (2013)

    Article  CAS  Google Scholar 

  30. A. Guechi, A. Merabet, Chegaar M. Chegaar, J. Alloys. Compd. 623, 219 (2015)

    Article  CAS  Google Scholar 

  31. S.I. Ranganathan, M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 55504 (2008)

    Article  Google Scholar 

  32. K.B. Panda, K.S. Ravi Chandran, Comput. Mater. Sci. 35, 134 (2006)

    Article  CAS  Google Scholar 

  33. S. P. Singh, G. Singh, A. K. Verma, P. K. Yadawa, Yadav R. R. Yadav, Pramana-J. Phys. 93, 83 (2019)

  34. A.K. Jaiswal, P.K. Yadawa, R.R. Yadav, Ultrasonics 89, 22 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Pramod Kumar Yadawa acknowledged Veer Bahadur Singh Purvanchal University (133/VBSPU/IQAC/2022, Date. 23-03-2022) minor project grant (Code:50) and R & D grant from Department of Higher Education, Uttar Pradesh for financial support. Sachin Rai would like to express his thanks to Council for Scientific and Industrial Research – University Grant Comission (CSIR – UGC) for providing financial assistance in form of CSIR - Junior Research Fellowship (1500/CSIR-UGC NET dec, 2017) India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod K. Yadawa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, A.K., Rai, S. & Yadawa, P.K. Theoretical Investigations on Mechanical and Ultrasonic Characteristics of Gallium Nitride Semiconductor under High Pressure. emergent mater. 5, 1985–1993 (2022). https://doi.org/10.1007/s42247-022-00419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00419-2

Keywords

Navigation