Skip to main content
Log in

Selectivity engineering in catalysis by ruthenium nanoparticles supported on heteropolyacid-encapsulated MOF-5: one-pot synthesis of allyl 4-cyclohexanebutyrate and kinetic modeling

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Functionalized metal-organic framework containing a heteropolyacid such as dodecatungstophosphoric (DTP)-encapsulated MOF-5 was synthesized by an in situ method and then ruthenium was incorporated by incipient wetness impregnation. A multifunctional heterogeneous catalyst, 1% Ru-15%DTP@MOF-5 with active acid and the metal sites make it the most efficient catalyst. For acid sites, dodecatungstophosphoric acid (DTP) was encapsulated into MOF-5 and ruthenium was loaded as metal sites. Its activity was examined in the one-pot synthesis of allyl 4-cyclohexanebutyrate, a flavoring agent, by esterification of 4-phenylbutyric acid with allyl alcohol followed by aromatic ring hydrogenation using molecular hydrogen. Esterification of 4-phenylbutyric acid with allyl alcohol gives allyl 4-phenylbutyrate which is further hydrogenated to give allyl 4-cyclohexanebutyrate. The octahedral cubic morphology of MOF-5 was retained even after DTP encapsulation and loading of ruthenium. Catalyst screening for esterification step was carried out by varying loadings of DTP (10, 15, and 20%) on MOF-5. Among these, 15% DTP-loaded MOF-5 showed the best catalytic activity. For selective aromatic ring hydrogenation, different metals such as Pd, Re, Ru, and Rh were examined and it was found that the Ru-based catalyst resulted in the highest conversion of allyl 4-phenylbutyrate (89.63%) and selectivity for allyl 4-cyclohexanebutyrate (96.52%). 1% Ru-15% DTP@MOF-5 catalyst was thermally stable and five times reusable. For both the steps, the kinetics was studied using the Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanism and the apparent activation energy for esterification was calculated as 13.34 kcal/mol and that for hydrogenation as 14.87 kcal/mol.

Selectivity engineering in catalysis by ruthenium nanoparticles supported on heteropolyacid-encapsulated MOF-5: one-pot synthesis of allyl 4-cyclohexanebutyrate and kinetic modeling

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Scheme 3
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

DTP:

Dodecatungstophosphoric acid

TEA:

Triethyl amine

DMF:

N,N-Dimethylformamide

HPA:

Heteropolyacid

FCC:

Face-centered-cubic

A :

4-Phenylbutyric acid

B :

Allyl alcohol

C :

Allyl 4-phenylbutyrate

D :

Water

G :

Allyl 4-cyclohexanebutyrate

H :

Hydrogen

K A :

adsorption constant for A (L/mol)

KB :

adsorption constant for B (L/mol)

K C :

adsorption constant for C (L/mol)

K H :

adsorption constant for hydrogen (L/mol)

CA :

Concentration of A (mol/L)

C B :

Concentration of B (mol/L)

C C :

Concentration of C (mol/L)

C D :

Concentration of D (mol/L)

C E :

Concentration of E (mol/L)

S 1 :

Acid site

S 2 :

Metal site

w:

Catalyst loading (g/L)

k, k 1 :

Rate constants with appropriate units

M :

Mole ratio of intial concentration of B to A, CB0/CA0

C t :

Total concentration of catalytic sites (mol/L)

XA :

Fractional conversion of A

XC :

Fractional conversion of C

References

  1. M.H. Yap, K.L. Fow, G.Z. Chen, Synthesis and applications of MOF-derived porous nanostructures. Green Energy Environ. 2, 218–245 (2017). https://doi.org/10.1016/j.gee.2017.05.003

    Article  Google Scholar 

  2. H.V. Doan, H. Amer Hamzah, P. Karikkethu Prabhakaran, C. Petrillo, V.P. Ting, Hierarchical Metal–Organic Frameworks with Macroporosity: Synthesis, Achievements, and Challenges. Nano-Micro Lett. 11, 54 (2019).  https://doi.org/10.1007/s40820-019-0286-9

  3. H. Zhu, D. Liu, The synthetic strategies of metal-organic framework membranes, films and 2D MOFs and their applications in devices. J. Mater. Chem. A 7, 21004–21035 (2019). https://doi.org/10.1039/c9ta05383b

    Article  CAS  Google Scholar 

  4. M.S. Denny, J.C. Moreton, L. Benz, S.M. Cohen, Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 16078 (2016). https://doi.org/10.1038/natrevmats2016.78

  5. A. Amiri, F. Ghaemi, B. Maleki, Hybrid nanocomposites prepared from a metal-organic framework of type MOF-199(cu) and graphene or fullerene as sorbents for dispersive solid phase extraction of polycyclic aromatic hydrocarbons. Microchim. Acta 186, 131 (2019). https://doi.org/10.1007/s00604-019-3246-7

  6. R.S. Malkar, H. Daly, C. Hardacre, G.D. Yadav, Aldol condensation of 5-Hydroxymethylfurfural to fuel precursor over novel aluminum exchanged-DTP@ZIF-8. ACS Sustain. Chem. Eng. 7, 16215–16224 (2019). https://doi.org/10.1021/acssuschemeng.9b02939

    Article  CAS  Google Scholar 

  7. L. Li, Q. Yang, S. Chen, X. Hou, B. Liu, J. Lu, H.L. Jiang, Boosting selective oxidation of cyclohexane over a metal-organic framework by hydrophobicity engineering of pore walls. Chem. Commun. 53, 10026–10029 (2017). https://doi.org/10.1039/c7cc06166h

    Article  CAS  Google Scholar 

  8. J. Han, D. Wang, Y. Du, S. Xi, J. Hong, S. Yin, Z. Chen, T. Zhou, R. Xu, Metal-organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation. J. Mater. Chem. A 3, 20607–20613 (2015). https://doi.org/10.1039/c5ta04675k

    Article  CAS  Google Scholar 

  9. R.S. Malkar, G.D. Yadav, Synthesis of cinnamyl benzoate over novel heteropoly acid encapsulated ZIF-8. Appl. Catal. A Gen. 560, 54–65 (2018). https://doi.org/10.1016/j.apcata.2018.04.038

    Article  CAS  Google Scholar 

  10. T.W. Murinzi, T.A. Clement, V. Chitsa, G. Mehlana, Copper oxide nanoparticles encapsulated in HKUST-1 metal-organic framework for electrocatalytic oxidation of citric acid. J. Solid State Chem. 268, 198–206 (2018). https://doi.org/10.1016/j.jssc.2018.09.003

    Article  CAS  Google Scholar 

  11. R.S. Malkar, H. Daly, C. Hardacre, G.D. Yadav, Novelty of iron-exchanged heteropolyacid encapsulated inside ZIF-8 as an active and superior catalyst in the esterification of furfuryl alcohol and acetic acid. React. Chem. Eng. 4, 1790–1802 (2019). https://doi.org/10.1039/c9re00167k

    Article  CAS  Google Scholar 

  12. M. Kassymova, A. De Mahieu, S. Chaemchuen, P. Demeyere, B. Mousavi, S. Zhuiykov, M.S. Yusubov, F. Verpoort, Post-synthetically modified MOF for the A3-coupling reaction of aldehyde, amine, and alkyne. Catal. Sci. Technol. 8, 4129–4140 (2018). https://doi.org/10.1039/c8cy00662h

    Article  CAS  Google Scholar 

  13. N.T.S. Phan, K.K.A. Le, T.D. Phan, MOF-5 as an efficient heterogeneous catalyst for Friedel-Crafts alkylation reactions. Appl. Catal. A Gen. 382, 246–253 (2010). https://doi.org/10.1016/j.apcata.2010.04.053

    Article  CAS  Google Scholar 

  14. H. Zhao, H. Song, L. Chou, Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties. Inorg. Chem. Commun. 15, 261–265 (2012). https://doi.org/10.1016/j.inoche.2011.10.040

    Article  CAS  Google Scholar 

  15. R.A. Rather, Z.N. Siddiqui, Silver phosphate supported on metal–organic framework (Ag3PO4@MOF-5) as a novel heterogeneous catalyst for green synthesis of indenoquinolinediones. Appl. Organomet. Chem. 33, 1–14 (2019). https://doi.org/10.1002/aoc.5176

    Article  CAS  Google Scholar 

  16. F. Guo, S. Yang, Y. Liu, P. Wang, J. Huang, W.Y. Sun, Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction. ACS Catal. 9, 8464–8470 (2019). https://doi.org/10.1021/acscatal.9b02126

    Article  CAS  Google Scholar 

  17. K.I. Otake, J. Ye, M. Mandal, T. Islamoglu, C.T. Buru, J.T. Hupp, M. Delferro, D.G. Truhlar, C.J. Cramer, O.K. Farha, Enhanced activity of heterogeneous Pd(II) catalysts on acid-functionalized metal-organic frameworks. ACS Catal. 9, 5383–5390 (2019). https://doi.org/10.1021/acscatal.9b01043

    Article  CAS  Google Scholar 

  18. A.M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O.M. Yaghi, R. Jürgen Behm, Highly active and stable single-atom Cu catalysts supported by a metal-organic framework. J. Am. Chem. Soc. 141, 5201–5210 (2019). https://doi.org/10.1021/jacs.8b11386

    Article  CAS  Google Scholar 

  19. Y. Zhang, H. Chen, Y. Pan, X. Zeng, X. Jiang, Z. Long, X. Hou, Cerium-based UiO-66 metal-organic frameworks explored as efficient redox catalysts: titanium incorporation and generation of abundant oxygen vacancies. Chem. Commun. 55, 13959–13962 (2019). https://doi.org/10.1039/c9cc06562h

    Article  CAS  Google Scholar 

  20. M. Mueller, S. Hermes, K. Kaehler, M. Muhler, R.A. Fischer, Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO/MOF as catalysts for methanol synthesis. Chem. Mater. 20, 4576–4587 (2008)

    Article  CAS  Google Scholar 

  21. A. Schejn, T. Mazet, V. Falk, L. Balan, L. Aranda, G. Medjahdi, R. Schneider, Fe3O4@ZIF-8: Magnetically recoverable catalysts by loading Fe3O4 nanoparticles inside a zinc imidazolate framework. Dalton Trans. 44, 10136–10140 (2015). https://doi.org/10.1039/c5dt01191d

    Article  CAS  Google Scholar 

  22. J. Feng, Y. Zhong, M. Xie, M. Li, S. Jiang, Using MOF-808 as a promising support to immobilize Ru for Selective Hydrogenation of levulinic acid to γ-Valerolactone. Catal. Lett. (2020). https://doi.org/10.1007/s10562-020-03277-x

  23. T. Sawai, T. Yonehara, A. Yonezawa, M. Sano, T. Suzuki, T. Miyake, Preparation of PD/MOF and RU/MOF catalysts and catalytic performance for hydrogenation and cross-coupling reactions. J. Japan Pet. Inst. 57, 58–64 (2014). https://doi.org/10.1627/jpi.57.58

    Article  CAS  Google Scholar 

  24. T. Zhang, Z. Wang, Q. Zhao, F. Li, W. Xue, Partial hydrogenation of benzene to cyclohexene over Ru-Zn/MCM-41. J. Nanomater. 2015, 1–8 (2015). https://doi.org/10.1155/2015/670896

    Article  CAS  Google Scholar 

  25. P. Guo, S. Liao, X. Tong, Heterogeneous nickel catalysts derived from 2D metal-organic frameworks for regulating the selectivity of furfural hydrogenation. ACS Omega. 4, 21724–21731 (2019). https://doi.org/10.1021/acsomega.9b02443

    Article  CAS  Google Scholar 

  26. Y. Long, S. Song, J. Li, L. Wu, Q. Wang, Y. Liu, R. Jin, H. Zhang, Pt/CeO2@MOF Core@Shell Nanoreactor for selective hydrogenation of furfural via the channel screening effect. ACS Catal. 8, 8506–8512 (2018). https://doi.org/10.1021/acscatal.8b01851

    Article  CAS  Google Scholar 

  27. X. Hu, K. Ma, A. Sabbaghi, X. Chen, A. Chatterjee, F.L.Y. Lam, Mild acid functionalization of metal-organic framework and its catalytic effect on esterification of acetic acid with n-butanol. Mol. Catal. 482, 110635 (2020). https://doi.org/10.1016/j.mcat.2019.110635

    Article  CAS  Google Scholar 

  28. F.G. Cirujano, A. Corma, F.X. Llabrés i Xamena, Conversion of levulinic acid into chemicals: synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chem. Eng. Sci. 124, 52–60 (2015). https://doi.org/10.1016/j.ces.2014.09.047

    Article  CAS  Google Scholar 

  29. G.D. Yadav, Synergism of clay and heteropoly acids as nano-catalysts for the development of green processes with potential industrial applications. Catal. Sury. Asia 9, 117–137 (2005)

    Article  CAS  Google Scholar 

  30. V.V. Bokade, G.D. Yadav, Synthesis of bio-diesel and bio-lubricant by transesterification of vegetable oil with lower and higher alcohols over heteropolyacids supported by clay (K-10). Process. Saf. Environ. Prot. 85(5), 372–377 (2007)

    Article  CAS  Google Scholar 

  31. M.S. Tiwari, G.D. Yadav, Novel aluminium exchanged dodecatungstophosphoric acid supported on K-10 clay as catalyst: benzoylation of diphenyloxide with benzoic anhydride. RSC Adv. 6, 49091–49100 (2016)

    Article  CAS  Google Scholar 

  32. D.P. Wagh, G.D. Yadav, Multi-functional Fe-Al0.66DTP/MCF catalyst in cascade engineered synthesis of the drug butamben: novelty of catalyst, reaction kinetics and mechanism. Mol. Catal. 483, 110711 (2020)

    Article  CAS  Google Scholar 

  33. G.D. Yadav, N.S. Asthana, V.S. Kamble, Cesium-substituted dodecatungstophosphoric acid on K-10 clay for benzoylation of anisole with benzoyl chloride. J. Catal. 217, 88–99 (2003)

    CAS  Google Scholar 

  34. G.D. Yadav, H.G. Manyar, Novelties of synthesis of acetoveratrone using heteropoly acid supported on hexagonal mesoporous silica. Microporous Mesoporous Mater. 63, 85–96 (2003)

    Article  CAS  Google Scholar 

  35. R. Tayebee, M. Fattahi Abdizadeh, N. Erfaninia, A. Amiri, M. Baghayeri, R.M. Kakhki, B. Maleki, E. Esmaili, Phosphotungstic acid grafted zeolite imidazolate framework as an effective heterogeneous nanocatalyst for the one-pot solvent-free synthesis of 3,4-dihydropyrimidinones. Appl. Organomet. Chem. 33, 1–10 (2019). https://doi.org/10.1002/aoc.4959

    Article  CAS  Google Scholar 

  36. A. Jamshidi, B. Maleki, F.M. Zonoz, R. Tayebee, HPA-dendrimer functionalized magnetic nanoparticles (Fe3O4@D-NH2-HPA) as a novel inorganic-organic hybrid and recyclable catalyst for the one-pot synthesis of highly substituted pyran derivatives. Mater. Chem. Phys. 209, 46–59 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.070

    Article  CAS  Google Scholar 

  37. B. Maleki, A.V. Mofrad, R. Tayebee, A. Khojastehnezhad, H. Alinezhad, E. Rezaei Seresht, One-pot synthesis of 1,4-dihydropyridine derivatives catalyzed by silica-coated magnetic NiFe2O4 nanoparticles-supported H14[NaP5W30O110]. Russ. J. Gen. Chem. 87, 2922–2929 (2017). https://doi.org/10.1134/S1070363217120325

    Article  CAS  Google Scholar 

  38. A. Jamshidi, F. Mohammadi Zonoz, B. Maleki, Synthesis and characterization of a new nano ionic liquid based on dawson-type polyoxometalate and its application in the synthesis of symmetrical N,N′-alkylidene bisamides. Polycycl. Aromat. Compd. 40, 875–888 (2020). https://doi.org/10.1080/10406638.2018.1504094

    Article  CAS  Google Scholar 

  39. S. Opelt, S. Türk, E. Dietzsch, A. Henschel, S. Kaskel, E. Klemm, Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst. Catal. Commun. 9, 1286–1290 (2008). https://doi.org/10.1016/j.catcom.2007.11.019

    Article  CAS  Google Scholar 

  40. L. Shi, T. Fan, Isomerization of n-hexane over MOF-5 supported molybdenum carbide, Conf. Proc. - 2009 AIChE Annu. Meet. AIChE. (2009)

  41. A.M.S.T.T. Dang, Y. Zhu, S.C. Ghosh, A. Chen, C.L.L. Chai, aminocarbonylation of aryI iodides using MOF-5-supported Pd nanoparticles. Synfacts 8, 0462 (2012). https://doi.org/10.1055/s-0031-1290555

    Article  Google Scholar 

  42. Luzan, S. M.; Talyzin, A. V. Hydrogen Adsorption in Pt Catalyst/MOF-5 Materials. Microporous Mesoporous Mater. 135, 201–205 (2010). https://doi.org/10.1016/j.micromeso.2010.07.018

  43. U. Ravon, M.E. Domine, C. Gaudillère, A. Desmartin-Chomel, D. Farrusseng, MOF-5 as Acid Catalyst with Shape Selectivity Properties, Stud Surf Sci Catal. 174, 467-470 (2008). https://doi.org/10.1016/S0167-2991(08)80242-X

  44. B.L. Xiang, L. Fu, Y. Li, Y. Liu, Preparation of Fe(II)/MOF-5 catalyst for highly selective catalytic hydroxylation of phenol by equivalent loading at room temperature. J. Chem. 2019, 1–10 (2019). https://doi.org/10.1155/2019/8950630

  45. A. Nemati Chelavi, V. Zare-Shahabadi, S. Sayyahi, H. Anaraki-Ardakani, Optimization of the transfer hydrogenation reaction of acetophenone on Ni@MOF-5 nanoparticles using response surface methodology. Res. Chem. Intermed. 46, 445–458 (2020). https://doi.org/10.1007/s11164-019-03959-1

    Article  CAS  Google Scholar 

  46. A.K. Chakraborti, B. Singh, S.V. Chankeshwara, A.R. Patel, Protic acid immobilized on solid support as an extremely efficient recyclable catalyst system for a direct and atom economical esterification of carboxylic acids with alcohols. J. Organomet. Chem. 74, 5967–5974 (2009). https://doi.org/10.1021/jo900614s

    Article  CAS  Google Scholar 

  47. M.M. Peng, U.J. Jeon, M. Ganesh, A. Aziz, R. Vinodh, M. Palanichamy, H.T. Jang, Oxidation of ethylbenzene using nickel oxide supported metal organic framework catalyst. Bull. Kor. Chem. Soc. 35, 3213–3218 (2014). https://doi.org/10.5012/bkcs.2014.35.11.3213

    Article  CAS  Google Scholar 

  48. O.M.Y. Hailian Li, M. Eddaoudi, M. OKeeffe, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)

    Article  Google Scholar 

  49. H.M. Yang, X.L. Song, T.L. Yang, Z.H. Liang, C.M. Fan, X.G. Hao, Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction. RSC Adv. 4, 15720–15726 (2014). https://doi.org/10.1039/c3ra47744d

    Article  CAS  Google Scholar 

  50. R.S. Malkar, G.D. Yadav, Superior activity and selectivity of multifunctional catalyst Pd-DTP@ZIF-8 in one pot synthesis of 3-phenyl propyl benzoate. Inorg. Chim. Acta 490, 282–293 (2019). https://doi.org/10.1016/j.ica.2019.03.012

    Article  CAS  Google Scholar 

  51. A. Biswas, S. Paul, A. Banerjee, Carbon nanodots, Ru nanodots and hybrid nanodots: Preparation and catalytic properties. J. Mater. Chem. A 3, 15074–15081 (2015). https://doi.org/10.1039/c5ta03355a

    Article  CAS  Google Scholar 

  52. M. Arjmandi, M. Pakizeh, Effects of washing and drying on crystal structure and pore size distribution (PSD) of Zn4O13C24H12 framework (IRMOF-1). Acta Metall. Sin. (English Lett) 26, 597–601 (2013). https://doi.org/10.1007/s40195-013-0105-0

    Article  CAS  Google Scholar 

  53. G. Blanita, O. Ardelean, D. Lupu, G. Borodi, M. Miheţ, M. Coroş, M. Vlassa, I. Mişan, I. Coldea, G. Popeneciu, Microwave assisted synthesis of MOF-5 at atmospheric pressure. Rev. Roum. Chim. 56, 583–588 (2011)

    CAS  Google Scholar 

  54. J.M. Yang, Q. Liu, W.Y. Sun, Shape and size control and gas adsorption of Ni(II)-doped MOF-5 nano/microcrystals. Microporous Mesoporous Mater. 190, 26–31 (2014). https://doi.org/10.1016/j.micromeso.2014.01.020

    Article  CAS  Google Scholar 

  55. Y. Liu, Z. Ng, E.A. Khan, H.K. Jeong, C. bun Ching, Z. Lai, Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous Mesoporous Mater. 118, 296–301 (2009). https://doi.org/10.1016/j.micromeso.2008.08.054

    Article  CAS  Google Scholar 

  56. L. Zhao, Y. Zhang, S. Bi, Q. Liu, Metal-organic framework-derived CeO2-ZnO catalysts for C3H6-SCR of NO: An: In situ DRIFTS study. RSC Adv. 9, 19236–19242 (2019). https://doi.org/10.1039/c9ra03103k

    Article  CAS  Google Scholar 

  57. X. Sun, T. Wu, Z. Yan, W.J. Chen, X.B. Lian, Q. Xia, S. Chen, Q.H. Wu, Novel MOF-5 derived porous carbons as excellent adsorption materials for n-hexane. J. Solid State Chem. 271, 354–360 (2019). https://doi.org/10.1016/j.jssc.2019.01.002

    Article  CAS  Google Scholar 

  58. S. Akbayrak, S. Özkar, Ruthenium(0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia-borane. ACS Appl. Mater. Interfaces 4, 6302–6310 (2012). https://doi.org/10.1021/am3019146

    Article  CAS  Google Scholar 

  59. M. Zhang, W. Chen, S.J. Ding, Z.Y. Liu, Y. Huang, Z.W. Liao, D.W. Zhang, Physical and electrical characterization of atomic-layer-deposited Ru nanocrystals embedded into Al2O3 for memory applications. J. Phys. D. Appl. Phys. 41 (2008). https://doi.org/10.1088/0022-3727/41/3/032007

  60. H.K. Hassan, N.F. Atta, M.M. Hamed, A. Galal, T. Jacob, Ruthenium nanoparticles-modified reduced graphene prepared by a green method for high-performance supercapacitor application in neutral electrolyte. RSC Adv. 7, 11286–11296 (2017). https://doi.org/10.1039/c6ra27415c

    Article  CAS  Google Scholar 

  61. H. Zhao, H. Song, J. Zhao, J. Yang, L. Yan, L. Chou, The reactivity and deactivation mechanism of Ru@C catalyst over hydrogenation of aromatics to cyclohexane derivatives. ChemistrySelect. 5, 4316–4327 (2020). https://doi.org/10.1002/slct.202000311

    Article  CAS  Google Scholar 

  62. S. Toppinen, Liquid-phase hydrogenation kinetics of aromatic hydrocarbon mixtures. Ind. Eng. Chem. Res. 36, 2101–2109 (1997). https://doi.org/10.1021/ie960263v

    Article  CAS  Google Scholar 

  63. S. Toppinen, T.K. Rantakylä, T. Salmi, J. Aittamaa, Kinetics of the liquid-phase hydrogenation of benzene and some monosubstituted alkylbenzenes over a nickel catalyst. Ind. Eng. Chem. Res. 35, 1824–1833 (1996). https://doi.org/10.1021/ie9504314

    Article  CAS  Google Scholar 

  64. V.I. Isaeva, O.M. Nefedov, L.M. Kustov, Metal–organic frameworks-based catalysts for biomass processing. Catalysts 8 (2018). https://doi.org/10.3390/catal8090368

  65. L. Lu, X.Y. Li, X.Q. Liu, Z.M. Wang, L.B. Sun, Enhancing the hydrostability and catalytic performance of metal-organic frameworks by hybridizing with attapulgite, a natural clay. J. Mater. Chem. A 3, 6998–7005 (2015). https://doi.org/10.1039/c5ta00959f

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D. P. Wagh acknowledges University Grants Commission (UGC) for awarding the BSR Senior Research Fellowship under its SAP programme in Green Technology. G. D. Yadav acknowledges support from the R. T. Mody Distinguished Professor Endowment, Tata Chemicals Darbari Seth Distinguished Professor of Leadership and Innovation, and J. C. Bose National Fellowship of Department of Science and Technology (DST), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapati D. Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Declaration

Not applicable.

Supplementary Information

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagh, D.P., Yadav, G.D. Selectivity engineering in catalysis by ruthenium nanoparticles supported on heteropolyacid-encapsulated MOF-5: one-pot synthesis of allyl 4-cyclohexanebutyrate and kinetic modeling. emergent mater. 3, 965–988 (2020). https://doi.org/10.1007/s42247-020-00139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00139-5

Keywords

Navigation