Skip to main content
Log in

Effects of washing and drying on crystal structure and pore size distribution (PSD) of Zn4O13C24H12 framework (IRMOF-1)

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this study, the effects of various methods of washing and drying of MOF-5 nanocrystals on structure formation were investigated. Eight samples of MOF-5 were synthesized under different conditions. TGA, XRD and PSD analysis were applied to characterize of the samples. The methods of washing and drying were found to be important in determining the final structure of MOF-5s. MOF-5 with high BET surface area can be obtained by choosing a suitable method of washing and drying. According to the results obtained in this work, it was found that vacuum drying at 425 °C is sufficient to dissolve the MOF-5-DMF. Similar results were obtained by washing method (with CH2Cl2 and CHCl3), when compared with vacuum drying at 425 °C according to XRD test. The pore size distribution of samples 1–5 and 8 were calculated by SHN1 method and results showed that the samples in which solvent vacuum was DMF, have lower pore volume, uniform pore size distribution and the pore size are smaller than samples 3, 4 and 8. It was also found that activated MOF-5 can be converted to its deactivated form prior to drying of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dinca and J.R. Long, Angew. Chem. Int. Ed. 47 (2008) 6766.

    Article  CAS  Google Scholar 

  2. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe and O.M. Yaghi, Science 300 (2003) 1127.

    Article  CAS  Google Scholar 

  3. J.W. Yoon, Y.K. Seo, Y.K. Hwang, J.S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, P.L. Llewellyn, C. Serre, P. Horcajada, J.M. Greneche, A.E. Rodrigues and G. Ferey, Angew. Chem. Int. Ed. 49 (2010) 5949.

    Article  CAS  Google Scholar 

  4. R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang and H.C. Zhou, Coord. Chem. Rev. 253 (2009) 3042.

    Article  CAS  Google Scholar 

  5. R.C. Huxford, J.D. Rocca and W. Lin, Curr. Opin. Chem. Biol. 14) (2010) 262.

    Article  CAS  Google Scholar 

  6. J.Y. An, S.J. Geib and N.L. Rosi, J. Am. Chem. Soc. 131 (2009) 8376.

    Article  CAS  Google Scholar 

  7. G. de Combarieu, M. Morcrette, F. Millange, N. Guillou, J. Cabana, C.P. Grey, I. Margiolaki, G. Ferey and J.M. Tarascon, Chem. Mater. 21 (2009) 1602.

    Article  Google Scholar 

  8. Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre and G. Ferey, Angew. Chem. Int. Ed. 47 (2008) 4144.

    Article  CAS  Google Scholar 

  9. L.F. Yang, S. Kinoshita, T. Yamada, S. Kanda, H. Kitagawa, M. Tokunaga, T. Ishimoto, T. Ogura, R. Nagumo, A. Miyamoto and M. Koyama, Angew. Chem. Int. Ed. 49 (2010) 5348.

    Article  CAS  Google Scholar 

  10. H. Li, M. Eddaoudi, M. O’Keeffe and O.M. Yaghi, Nature 402 (1999) 276.

    Article  CAS  Google Scholar 

  11. M. Muller, S. Hermes, K. Kaehler, M.W.E. van de Berg, M. Muhler and R.A. Fischer, Chem. Mater. 20 (2008) 4576.

    Article  Google Scholar 

  12. F. Salles, H. Jobic, G. Maurin, M.M. Koza, P.L. Llewwellyn, T. Devic, C. Serre and G. Férey, Phys. Rev. Lett. 100 (2008) 245901.

    Article  CAS  Google Scholar 

  13. J.S. Choi, W.J. Son, J. Kim, and W.S. Ahn, Microporous Mesoporous Mater. 116 (2008) 727.

    Article  CAS  Google Scholar 

  14. F. Sun, Z. Yin, Q. Q. Wang, D. Sun, M. Zeng and M. Kurmoo, Angew. Chem. Int. Ed. 52 (2013) 4538.

    Article  CAS  Google Scholar 

  15. S. Brunauer, P.H. Emmett and E. Teller, J. Am. Chem. Soc. 60 (1938) 309.

    Article  CAS  Google Scholar 

  16. A. Shahsavand and M.N. Shahrak, Colloids Surf. A 378 (2011) 1.

    Article  CAS  Google Scholar 

  17. Z. Jia, H. Li, Zh. Yu, P. Wang and X. Fan, Mater. Lett. 65 (2011) 2445.

    Article  CAS  Google Scholar 

  18. L. Zhang and Y.H. Hu, Mater. Sci. Eng. B 176 (2011) 573.

    Article  CAS  Google Scholar 

  19. E.V. Perez, K.J. Jr Balkus, J.P. Ferraris and I.H. Musselman, J. Membr. Sci. 328 (2009) 165.

    Article  CAS  Google Scholar 

  20. T. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt and J. Pastre, J. Mater. Chem. 16 (2005) 626.

    Article  Google Scholar 

  21. A.R. Millward and O.M. Yaghi, J. Am. Chem. Soc. 127 (2005) 17998.

    Article  CAS  Google Scholar 

  22. M. Zeng, Y. Tan, Y. He, Z. Yin, Q. Chen and M. Kurmoo, Inorg. Chem. 52 (2013) 2353.

    Article  CAS  Google Scholar 

  23. S.S. Kaye, A. Dailly, O.M. Yaghi and J.R. Long, J. Am. Chem. Soc. 129 (2007) 14176.

    Article  CAS  Google Scholar 

  24. L. Huang, H. Wang, J. Chen, Z. Wang, J. Sun, D. Zhao and Y. Yan, Microporous Mesoporous Mater. 58 (2003) 105.

    Article  CAS  Google Scholar 

  25. E.S. Boes 1, P. R. Livotto and H. Stassen, Chem. Phys. 331 (2006) 142.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pakizeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arjmandi, M., Pakizeh, M. Effects of washing and drying on crystal structure and pore size distribution (PSD) of Zn4O13C24H12 framework (IRMOF-1). ACTA METALL SIN 26, 597–601 (2013). https://doi.org/10.1007/s40195-013-0105-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-013-0105-0

Key Words

Navigation