Skip to main content
Log in

Refill friction stir spot welding (RFSSW): a review of processing, similar/dissimilar materials joining, mechanical properties and fracture mechanism

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Refill friction stir spot welding (RFSSW) provides a novel method to join similar and/or dissimilar metallic materials without a key-hole in the center of the joint. Having the key-hole free characterization, the similar/dissimilar RFSSW joint exhibits remarkable and endurable characteristics, including high shear strength, long fatigue life, and strong corrosion resistance. In the meanwhile, as the key-hole free joint has different microstructures compared with conventional friction stir spot welding, thus the RFSSW joint shall possess different shear and fatigue fracture mechanisms, which needs further investigation. To explore the underlying failure mechanism, the similar/dissimilar metallic material joining parameters and pre-treatment, mechanical properties, as well as fracture mechanisms under this novel technology will be discussed. In details, the welding tool design, welding parameters setting, and the influence of processing on the lap shear and fatigue properties, as well as the corrosion resistance will be mainly discussed. Moreover, the roadmap of RFFSW is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Karthikeyan, V. Balasubramanian, Int. J. Adv. Manuf. Technol. 51 (2010) 173–183.

    Article  Google Scholar 

  2. W. Yuan, R.S. Mishra, B. Carlson, R. Verma, R.K. Mishra, Mater. Sci. Eng. A 543 (2012) 200–209.

    Article  Google Scholar 

  3. M. Yu, H. Zhao, Z. Zhang, L. Zhou, X. Song, J. Manuf. Process. 77 (2022) 1–12.

    Article  Google Scholar 

  4. R. Heideman, C. Johnson, S. Kou, Sci. Technol. Weld. Join. 15 (2010) 597–604.

    Article  Google Scholar 

  5. A. Gerlich, P. Su, T. North, G. Bendzsak, Materials forum 2005 (2005) 290–294.

    Google Scholar 

  6. Z. Shen, Y. Ding, A.P. Gerlich, Crit. Rev. Solid State Mater. Sci. 45 (2020) 457–534.

    Article  Google Scholar 

  7. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R Rep. 50 (2005) 1–78.

    Article  Google Scholar 

  8. J. Yamaguchi, in: Toyota Prius: AEI best engineered vehicle 2004, Automotive Engineering International, Stuttgart, Germany, 2004, pp. 24.

    Google Scholar 

  9. R. Sakano, in: Proceedings of the 3rd International Symposium of Friction Stir Welding, Kobe, Japan, 2004, pp. 10020488538.

  10. D. Bakavos, Y. Chen, L. Babout, P. Prangnell, Metall. Mater. Trans. A 42 (2011) 1266–1282.

    Article  Google Scholar 

  11. N.T. Nguyen, D.Y. Kim, H.Y. Kim, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 225 (2011) 1746–1756.

    Article  Google Scholar 

  12. S. Venukumar, S. Yalagi, S. Muthukumaran, Trans. Nonferrous Met. Soc. China 23 (2013) 2833–2842.

    Article  Google Scholar 

  13. C. Schilling, J. dos Santos, Method and device for joining at least two adjoining work pieces by friction welding, US6722556B2, USA, 2004.

  14. M. Reimann, J. Goebel, J.F. dos Santos, Mater. Des. 132 (2017) 283–294.

    Article  Google Scholar 

  15. Y. Zuo, L. Kong, Z. Liu, Z. Lv, H. Wen, Trans. Indian Inst. Met. 73 (2020) 2975–2984.

    Article  Google Scholar 

  16. M.D. Tier, T.S. Rosendo, J.F. dos Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro, T.R. Strohaecker, J. Mater. Process. Technol. 213 (2013) 997–1005.

    Article  Google Scholar 

  17. V.S.R. Janga, M. Awang, Metals 12 (2022) 927.

    Article  Google Scholar 

  18. A. Kubit, T. Trzepiecinski, Archiv. Civ. Mech. Eng. 20 (2020) 117.

    Article  Google Scholar 

  19. A.M. Nasiri, Z. Shen, J.S.C. Hou, A.P. Gerlich, Eng. Fail. Anal. 84 (2018) 25–33.

    Article  Google Scholar 

  20. Z. Shen, Y. Ding, O. Gopkalo, B. Diak, A.P. Gerlich, J. Mater. Process. Technol. 252 (2018) 751–759.

    Article  Google Scholar 

  21. S. Ji, Y. Wang, Z. Li, Y. Yue, P. Chai, Trans. Indian Inst. Met. 70 (2017) 1417–1430.

    Article  Google Scholar 

  22. Z. Xu, Z. Li, S. Ji, L. Zhang, J. Mater. Sci. Technol. 34 (2018) 878–885.

    Article  Google Scholar 

  23. C.C. de Castro, A.H. Plaine, N.G. de Alcântara, J.F. dos Santos, Int. J. Adv. Manuf. Technol. 99 (2018) 1927–1936.

    Article  Google Scholar 

  24. C. Zhang, J. Cao, A.A. Shirzadi, Sci. Technol. Weld. Join. 26 (2021) 236–243.

    Article  Google Scholar 

  25. H.F. Zhang, L. Zhou, W.L. Li, G.H. Li, Y.T. Tang, N. Guo, J.C. Feng, Int. J. Miner. Metall. Mater. 28 (2021) 699–709.

    Article  Google Scholar 

  26. B. Fu, J. Shen, U.F.H.R. Suhuddin, T. Chen, J.F. dos Santos, B. Klusemann, M. Rethmeier, Scripta Mater. 203 (2021) 114113.

    Article  Google Scholar 

  27. P. Li, S. Chen, H. Dong, H. Ji, Y. Li, X. Guo, G. Yang, X. Zhang, X. Han, J. Manuf. Process. 49 (2020) 385–396.

    Article  Google Scholar 

  28. Y. Ding, Z. Shen, A.P. Gerlich, J. Manuf. Process. 30 (2017) 353–360.

    Article  Google Scholar 

  29. Z. Shen, Y. Ding, W. Guo, W. Hou, X. Liu, H. Chen, F. Liu, W. Li, A. Gerlich, Chin. J. Mech. Eng. 34 (2021) 75.

    Article  Google Scholar 

  30. M.E.B. Cardillo, J. Shen, N.G. de Alcântara, C.R.M. Afonso, J.F. dos Santos, Weld. World 63 (2019) 33–41.

    Article  Google Scholar 

  31. P. Chai, W. Hu, S. Ji, X. Ai, Z. Lv, Q. Song, J. Mater. Eng. Perform. 28 (2019) 6174–6181.

    Article  Google Scholar 

  32. U. Suhuddin, V. Fischer, F. Kroeff, J.F. dos Santos, Mater. Sci. Eng. A 590 (2014) 384–389.

    Article  Google Scholar 

  33. L. Zhou, L.Y. Luo, T.P. Zhang, W.X. He, Y.X. Huang, J.C. Feng, Int. J. Adv. Manuf. Technol. 92 (2017) 3425–3433.

    Article  Google Scholar 

  34. X.S. Feng, S.B. Li, L.N. Tang, H.M. Wang, Acta Metall. Sin. (Engl. Lett.) 33 (2020) 30–42.

    Article  Google Scholar 

  35. D. Zhang, J. Dong, J. Xiong, N. Jiang, J. Li, W. Guo, J. Mater. Res. Technol. 20 (2022) 1302–1314.

    Article  Google Scholar 

  36. G. Li, L. Zhou, L. Luo, X. Wu, N. Guo, J. Mater. Res. Technol. 8 (2019) 4115–4129.

    Article  Google Scholar 

  37. G.H. Li, L. Zhou, L.Y. Luo, X.M. Wu, N. Guo, Int. J. Miner. Metall. Mater. 28 (2021) 131–141.

    Article  Google Scholar 

  38. Z. Shen, W.Y. Li, Y. Ding, W. Hou, X.C. Liu, W. Guo, H.Y. Chen, X. Liu, J. Yang, A.P. Gerlich, J. Manuf. Process. 49 (2020) 260–270.

    Article  Google Scholar 

  39. J. Shen, S.B.M. Lage, U.F.H. Suhuddin, C. Bolfarini, J.F. dos Santos, Metall. Mater. Trans. A 49 (2018) 241–254.

    Article  Google Scholar 

  40. G. Zhang, W. Su, J. Zhang, Z. Wei, Metall. Mater. Trans. A 42 (2011) 2850–2861.

    Article  Google Scholar 

  41. Z. Dong, Q. Song, X. Ai, Z. Lv, J. Manuf. Process. 42 (2019) 106–112.

    Article  Google Scholar 

  42. P. Gao, Y. Zhang, K.P. Mehta, Met. Mater. Int. 27 (2021) 3085–3094.

    Article  Google Scholar 

  43. X. Zhou, Y. Chen, S. Li, Y. Huang, K. Hao, P. Peng, Metals 8 (2018) 922.

    Article  Google Scholar 

  44. X.W. Feng, J.X. Li, Z.B. Zheng, B. Feng, H.K. Yang, J. Iron Steel Res. Int. 30 (2023) 1888–1895.

    Article  Google Scholar 

  45. C. Zhang, G. Huang, Y. Cao, Q. Li, Y. Zhu, X. Huang, Q. Liu, J. Mater. Sci. 55 (2020) 15005–15032.

    Article  Google Scholar 

  46. B.H. Silva, G. Zepon, C. Bolfarini, J.F. dos Santos, Mater. Sci. Eng. A 773 (2020) 138724.

    Article  Google Scholar 

  47. Z. Li, S. Ji, Y. Ma, P. Chai, Y. Yue, S. Gao, Int. J. Adv. Manuf. Technol. 86 (2016) 1925–1932.

    Article  Google Scholar 

  48. Z. Shen, Y. Ding, J. Chen, A.P. Gerlich, Int. J. Fatigue 92 (2016) 78–86.

    Article  Google Scholar 

  49. X.G. Zhu, L.F. Wang, F.B. Qiao, L.J. Guo, Trans. China Weld. Inst. 35 (2014) 91–94.

    Google Scholar 

  50. S. Venukumar, S.G. Yalagi, S. Muthukumaran, S.V. Kailas, Sci. Technol. Weld. Join. 19 (2014) 214–223.

    Article  Google Scholar 

  51. R.C. Brzostek, U. Suhuddin, J.F. dos Santos, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 1208–1223.

    Article  Google Scholar 

  52. H. Yang, D. Cai, J. Li, C.Y. Kwok, Y. Zhao, Y. Li, H. Liu, W. Lai, Fatigue Fract. Eng. Mater. Struct. 44 (2021) 3219–3223.

    Article  Google Scholar 

  53. G.S. Vacchi, R. Silva, A.H. Plaine, U.F.H. Suhuddin, N.G. Alcântara, V.L. Sordi, C.A.D. Rovere, Mater. Today Commun. 22 (2020) 100759.

    Article  Google Scholar 

  54. Y. Zou, W. Li, Y. Xu, X. Yang, Q. Chu, Z. Shen, Mater. Charact. 183 (2022) 111594.

    Article  Google Scholar 

  55. Y.X. Qiao, Z.B. Zheng, H.K. Yang, J. Long, P.X. Han, J. Iron Steel Res. Int. 30 (2023) 1463–1476.

    Article  Google Scholar 

  56. Z.B. Zheng, H.K. Yang, A.P. Shatrava, J. Long, Y.H. Wang, J.X. Li, K.H. Zheng, Mater. Sci. Eng. A 862 (2023) 144467.

    Article  Google Scholar 

  57. Y. Li, J. Mech. Eng. 52 (2016) 1.

    Google Scholar 

  58. H. Li, X.S. Liu, Y. Zhang, T. Yuan, E. Hodúlová, B. Šimeková, M. Bober, J. Senkara, Z.X. Li, Weld. World 66 (2022) 923–933.

    Article  Google Scholar 

  59. A.N. Ashong, M. Lee, S.T. Hong, Y.S. Lee, J.H. Kim, Met. Mater. Int. 27 (2021) 639–649.

    Article  Google Scholar 

  60. Y. Zhao, H. Yang, D. Cai, A. Andrii, J. Li, X. Chen, J. Adhes. Sci. Technol. (2023) 1–12.

    Article  Google Scholar 

  61. S. Hu, Z. Sun, F. Shen, J. Deng, W. Yang, H. Yang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 39 (2024) 167–173.

    Google Scholar 

  62. A. Derlatka, Zeszyty Naukowe Politechniki Częstochowskiej Budownictwo 177 (2021) 30–36.

    Article  Google Scholar 

  63. A. Fawcett, X. Chen, X. Huang, C. Li, Compos. Part B Eng. 161 (2019) 96–106.

    Article  Google Scholar 

  64. P. Lacki, A. Derlatka, J. Winowiecka, Compos. Struct. 218 (2019) 60–70.

    Article  Google Scholar 

  65. P. Lacki, A. Derlatka, Compos. Struct. 202 (2018) 201–209.

    Article  Google Scholar 

  66. C. Leng, H. Yang, G. Yi, H. Lo, J. Li, Y. Li, Mater. Sci. Eng. Technol. 55 (2024) 7–14.

    Google Scholar 

Download references

Acknowledgements

This work was supported by International Science and Technology Cooperation Project of Guangdong Province (Grant No. 2022A0505050054), Innovation and Technology Fund (ITF) (Grant No. ITP/021/19AP), and National Natural Science Foundation of China (Grant No. 51905112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-kun Yang.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yq., Yang, Hk., Andriia, A. et al. Refill friction stir spot welding (RFSSW): a review of processing, similar/dissimilar materials joining, mechanical properties and fracture mechanism. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01209-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01209-2

Keywords

Navigation