Skip to main content
Log in

Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

We used refill friction stir spot welding (RFSSW) to join 2-mm-thick AZ91D-H24 magnesium alloy sheets, and we investigated in detail the effect of tool plunge depth on the microstructure and fracture behavior of the joints. A sound joint surface can be obtained using plunge depths of 2.0 and 2.5 mm. Plunge depth was found to significantly affect the height of the hook, with greater plunge depths corresponding to more severe upward bending of the hook, which compromised the tensile-shear properties of the joints. The hardness reached a minimum at the thermo-mechanically affected zone due to the precipitation phases of this zone as it dissolved into the α-matrix during the welding process. The fracture modes of RFSSW joints can be divided into three types: shear fracture, plug fracture, and shear—plug fracture. Of these, the joint with a shear—plug fracture exhibited the best tensile-shear load of 6400 N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.W. Yu, A.T. Tang, Q. Wang, Z.Y. Gao, J.J. He, J. She, K. Song, and F.S. Pan, High strength and superior ductility of an ultra-fine grained magnesium-manganese alloy, Mater. Sci. Eng. A, 648(2015), p. 202.

    Article  CAS  Google Scholar 

  2. H. Huang, H.W. Miao, G.Y. Yuan, Z.C. Wang, and W.J. Ding, Fabrication of ultra-high strength magnesium alloys over 540 MPa with low alloying concentration by double continuously extrusion, J. Magnes. Alloys, 6(2018), No. 2, p. 107.

    Article  CAS  Google Scholar 

  3. Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita, and S. Murata, Effect of re-filling probe hole on tensile failure and fatigue behavior of friction stir spot welded joints in Al-Mg-Si alloy, Int. J. Fatigue, 30(2008), No. 10–11, p. 1956.

    Article  CAS  Google Scholar 

  4. G.Q. Chen, S. Zhang, Y.C. Zhu, C.L. Yang, and Q.Y. Shi, Thermo-mechanical analysis of friction stir welding: A review on recent advances, Acta Metall. Sin. Eng. Lett., 33(2020), No. 1, p. 3.

    Article  Google Scholar 

  5. Z.K. Shen, Y.Q. Ding, and A.P. Gerlich, Advances in friction stir spot welding, Crit. Rev. Solid State Mater. Sci., (2019), p. 1.

  6. Z. Shen, Y. Ding, J. Chen, B. Shalch Amirkhiz, J.Z. Wen, L. Fu, and A.P. Gerlich, Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1027.

    Article  Google Scholar 

  7. C. Schilling and J. dos Santos, Method and Device for Joining at Least Two Adjoining Work Pieces by Friction Welding, US Patent, Appl. 6722556, 2004.

  8. L. Zhou, L.Y. Luo, T.P. Zhang, W.X. He, Y.X. Huang, and J.C. Feng, Effect of rotation speed on microstructure and mechanical properties of refill friction stir spot welded 6061-T6 aluminum alloy, Int. J. Adv. Manuf. Technol., 92(2017), No. 9–12, p. 3425.

    Article  Google Scholar 

  9. S.D. Ji, Y. Wang, Z.W. Li, Y.M. Yue, and P. Chai, Effect of tool geometry on material flow behavior of refill friction stir spot welding, Trans. Indian. Inst. Met., 70(2017), No. 6, p. 1417.

    Article  CAS  Google Scholar 

  10. G.H. Li, L. Zhou, L.Y. Luo, X.M. Wu, and N. Guo, Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy, J. Mater. Res. Technol., 8(2019), No. 5, p. 4115.

    Article  CAS  Google Scholar 

  11. Z.W. Xu, Z.W. Li, S.D. Ji, and L.G. Zhang, Refill friction stir spot welding of 5083-O aluminum alloy, J. Mater. Sci. Technol., 34(2018), No. 5, p. 878.

    Article  Google Scholar 

  12. Y.Q. Zhao, H.J. Liu, S.X. Chen, Z. Lin, and J.C. Hou, Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy, Mater. Des., 62(2014), p. 40.

    Article  CAS  Google Scholar 

  13. Z.K. Shen, X.Q. Yang, S. Yang, Z.H. Zhang, and Y.H. Yin, Microstructure and mechanical properties of friction spot welded AA 6061-T4 aluminum alloy, Mater. Des., 49(2013), p. 181.

    Article  CAS  Google Scholar 

  14. T. Rosendo, M. Tier, J. Mazzaferro, C. Mazzaferro, T.R. Strohaecker, and J.F. Dos Santos, Mechanical performance of AA6181 refill friction spot welds under lap shear tensile loading, Fatigue. Fract. Eng. Mater. Struct., 38(2015), No. 12, p. 1443.

    Article  Google Scholar 

  15. Z.W. Li, S.D. Ji, Y.N. Ma, P. Chai, Y.M. Yue, and S.S. Gao, Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy, Int. J. Adv. Manuf. Technol., 86(2016), No. 5–8, p. 1925.

    Article  Google Scholar 

  16. M. Tier, T. Rosendo, J. Mazzaferro, C. Mazzaferro, J. Santos, and T. Strohaecker, The weld interface for friction spot welded 5052 aluminum alloy, Int. J. Adv. Manuf. Technol., 90(2017), No. 1–4, p. 267.

    Article  Google Scholar 

  17. M.D. Tier, T.S. Rosendo, J.F. dos Santos, N. Huber, J.A. Mazzaferro, C.P. Mazzaferro, and T.R. Strohaecker, The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminum welds, J. Mater. Process. Technol., 213(2013), No. 6, p. 997.

    Article  CAS  Google Scholar 

  18. J.Y. Cao, M. Wang, L. Kong, and L.J. Guo, Hook formation and mechanical properties of friction spot welding in alloy 6061-T6, J. Mater. Process. Technol., 230(2016), p. 254.

    Article  CAS  Google Scholar 

  19. L. Zhou, M.R. Yu, B.Y. Liu, Z.L. Zhang, S.W. Liu, X.G. Song, and H.Y. Zhao, Microstructure and mechanical properties of Al/steel dissimilar welds fabricated by friction surfacing assisted friction stir lap welding, J. Mater. Res. Technol., 9(2020), No. 1, p. 212.

    Article  CAS  Google Scholar 

  20. J.Y. Cao, M. Wang, L. Kong, H.X. Zhao, and P. Chai, Microstructure, texture and mechanical properties during refill friction stir spot welding of 6061-T6 alloy, Mater. Charact., 128(2017), p. 54.

    Article  CAS  Google Scholar 

  21. S.G. Arul, S.F. Miller, G.H. Kruger, T.Y. Pan, P.K. Mallick, and A.J. Shih, Experimental study of joint performance in spot friction welding of 6111-T4 aluminium alloy, Sci. Technol. Weld. Joining, 13(2008), No. 7, p. 629.

    Article  CAS  Google Scholar 

  22. T. Rosendo, B. Parra, M.A.D. Tier, A.A.M. da Silva, J.F. Dos Santos, T.R. Strohaecker, and N.G. Alcântara, Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminum alloy, Mater. Des., 32(2011), No. 3, p. 1094.

    Article  CAS  Google Scholar 

  23. Y.M. Yue, Y. Shi, S.D. Ji, Y. Wang, and Z.W. Li, Effect of sleeve plunge depth on microstructure and mechanical properties of refill friction stir spot welding of 2198 aluminum alloy, J. Mater. Eng. Perform., 26(2017), No. 10, p. 5064.

    Article  CAS  Google Scholar 

  24. L.C. Campanelli, U.F.H. Suhuddin, J.F. Dos Santos and N.G. de Alcantara, Parameters optimization for friction spot welding of AZ31 magnesium alloy by taguchi method, Soldagem Inspeção, 17(2012), No. 1, p. 26.

    Article  CAS  Google Scholar 

  25. R.I. Rodriguez, J.B. Jordon, H.M. Rao, H. Badarinarayan, Y. Wei, Haitham El Kadiri, and P.G. Allison, Microstructure, texture, and mechanical properties of friction stir spot welded rare-earth containing ZEK100 magnesium alloy sheets, Mater. Sci. Eng. A, 618(2014), p. 637.

    Article  CAS  Google Scholar 

  26. J.B. Jordon, M.F. Horstemeyer, S.R. Daniewicz, H. Badarinarayan, and J. Grantham, Fatigue characterization and modeling of friction stir spot welds in magnesium AZ31 alloy, J. Eng. Mater. Technol., 132(2010), No. 4, art. No. 041008.

  27. L.C. Campanelli, U.F. H. Suhuddin, A.Í.S. Antonialli, J.F. dos Santos, N.G. de Alcântara, and C. Bolfarini, Metallurgy and mechanical performance of AZ31 magnesium alloy friction spot welds, J. Mater. Process. Technol., 213(2013), No. 4, p. 515.

    Article  CAS  Google Scholar 

  28. Z.K. Shen, X.Q. Yang, Z.H. Zhang, L. Cui, and T.L. Li, Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints, Mater. Des., 44(2013), p. 476.

    Article  CAS  Google Scholar 

  29. Q. Yang, S. Mironov, Y.S. Sato, and K. Okamoto, Material flow during friction stir spot welding, Mater. Sci. Eng. A, 527(2010), No. 16–17, p. 4389.

    Article  Google Scholar 

  30. J. Chen, H. Fujii, Y.F. Sun, Y. Morisada, K. Kondoh, and K. Hashimoto, Effect of grain size on the microstructure and mechanical properties of friction stir welded non-combustive magnesium alloys, Mater. Sci. Eng. A, 549(2012), p. 176.

    Article  CAS  Google Scholar 

  31. G.V.V. Surya Kiran, K.H. Krishna, S.K. Sameer, M. Bhargavi, B.S. Kumar, G.M. Rao, Y. Naidubabu, R. Dumpala, and B.R. Sunil, Machining characteristics of fine grained AZ91 Mg alloy processed by friction stir processing, Trans. Nonferrous Met. Soc. China, 27(2017), No. 4, p. 804.

    Article  CAS  Google Scholar 

  32. H.J. Zhang, M. Wang, X. Zhang, and G.X. Yang, Microstructural characteristics and mechanical properties of bobbin tool friction stir welded 2A14-T6 aluminum alloy, Mater. Des., 65(2015), p. 559.

    Article  CAS  Google Scholar 

  33. G.H. Li, L. Zhou, S.F. Luo, F.B. Dong, and N. Guo, Microstructure and mechanical properties of bobbin tool friction stir welded ZK60 magnesium alloy, Mater. Sci. Eng. A, 776(2020), art. No. 138953.

  34. Y.B. Ji, K. Soon II, M.D. Jeong, and P.H. Heon, Preparation of AZ91D slurries for semi-solid forming using Al8(Mn, Fe)5 precipitates, J. Rare Earths, 22(2004), No. Z2, p. 42.

    Google Scholar 

  35. S.H.C. Park, Y.S. Sato, and H. Kokawa, Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D, J. Mater. Sci., 38(2003), No. 21, p. 4379.

    Article  CAS  Google Scholar 

  36. C.H. Cáceres and A.H. Blake, On the strain hardening behaviour of magnesium at room temperature, Mater. Sci. Eng. A, 462(2007), No. 1–2, p. 193.

    Article  Google Scholar 

  37. H. Adib, J. Jeong, and G. Pluvinage, Three-dimensional finite element analysis of tensile-shear spot-welded joints in tensile and compressive loading conditions, Strength Mater., 36(2004), No. 4, p. 353.

    Article  Google Scholar 

  38. L. Zhou, G.H. Li, R.X. Zhang, W.L. Zhou, W.X. He, Y.X. Huang and X.G. Song, Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint, J. Alloys Compd., 775(2019), p. 372.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Science and Technology Major Project of China (No. 2017ZX04005001) and the Key Research & Development Program of Shandong Province, China (No. 2018GGX103053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Hf., Zhou, L., Li, Wl. et al. Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints. Int J Miner Metall Mater 28, 699–709 (2021). https://doi.org/10.1007/s12613-020-2044-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2044-x

Keywords

Navigation