Skip to main content
Log in

Aggregation of CeAlO3 inclusions in heavy ingot of a steel containing 0.007% aluminum

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The distribution of inclusions at the bottom of a Ce-treated heavy steel ingot was detected and calculated. The three-dimensional morphology and spatial distribution of CeAlO3 clusters were characterized using the electrolytic extraction and Micro-CT detection. A model of inclusion collision to predict the aggregation of CeAlO3 inclusions in the ingot was established and validated by measured results. Inclusions were mainly CeAlO3 and a small amount of Ce2O2S in the tundish after cerium treatment. The collision and aggregation of inclusions led to the formation of large clusters in the ingot during the solidification process. Large slag entrainment inclusions, large CeAlO3 clusters and small CeAlO3 particles were observed from the center to the edge of the ingot bottom. Large inclusions were mainly concentrated at the center. The number density of inclusions larger than 200 μm was 0.21 mm−3. The maximum diameter of CeAlO3 clusters was 1340 μm. From the edge to the radial center and from the bottom to the top, the average diameter of inclusions gradually increased due to the longer solidification time of the ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E.J. Pickering, C. Chesman, S. Al-Bermani, M. Holland, P. Davies, J. Talamantes-Silva, Metall. Mater. Trans. B 46 (2015) 1860–1874.

    Article  Google Scholar 

  2. J. Li, X. Xu, N. Ren, M. Xia, J. Li, J. Iron Steel Res. Int. 29 (2022) 1901–1914.

    Article  Google Scholar 

  3. M. Bitterlin, A. Loucif, N. Charbonnier, M. Jahazi, L.P. Lapierre-Boire, J.B. Morin, Eng. Fail. Anal. 68 (2016) 122–131.

    Article  Google Scholar 

  4. W. Yang, X. Wang, L. Zhang, W. Wang, Steel Res. Int. 84 (2013) 878–891.

    Article  Google Scholar 

  5. W. Yang, H. Duan, L. Zhang, Y. Ren, JOM 65 (2013) 1173–1180.

    Article  Google Scholar 

  6. W. Mu, N. Dogan, K.S. Coley, J. Mater. Sci. 53 (2018) 13203–13215.

    Article  Google Scholar 

  7. L. Zhang, Nonmetallic inclusions in steels, Metallurgical Industry Press, Beijing, China, 2019.

    Google Scholar 

  8. Q. Ren, L. Zhang, Metall. Mater. Trans. B 51 (2020) 589–600.

    Article  Google Scholar 

  9. C. Wu, X. Yang, G. Cheng, Adv. Mater. Res. 311–313 (2011) 1032–1035.

    Article  Google Scholar 

  10. Y. Huang, G. Cheng, S. Li, W. Dai, Steel Res. Int. 89 (2018) 1800371.

    Article  Google Scholar 

  11. H. Li, Y. Yu, X. Ren, S. Zhang, S. Wang, J. Iron Steel Res. Int. 24 (2017) 925–934.

    Article  Google Scholar 

  12. S. Gao, M. Wang, J. Guo, H. Wang, J. Zhi, Y. Bao, Steel Res. Int. 90 (2019) 1900194.

    Article  Google Scholar 

  13. F. Huang, J. Li, R. Zang, Ironmak. Steelmak. 50 (2023) 744–756.

    Article  Google Scholar 

  14. S. Luo, Z. Shen, Z. Yu, W. Wang, M. Zhu, Steel Res. Int. 92 (2021) 2000394.

    Article  Google Scholar 

  15. R. Geng, J. Li, C. Shi, J. Iron Steel Res. Int. 29 (2022) 1659–1668.

    Article  Google Scholar 

  16. W. Zheng, X. Yan, S. Xiong, G. Wang, G. Li, J. Rare Earths 39 (2021) 348–356.

    Article  Google Scholar 

  17. G. Cai, Y. Pang, Y. Huang, R.D.K. Misra, ISIJ Int. 59 (2019) 2302–2310.

    Article  Google Scholar 

  18. W. Mu, N. Dogan, K.S. Coley, Metall. Mater. Trans. B 48 (2017) 2092–2103.

    Article  Google Scholar 

  19. Y. Wang, C. Liu, Metall. Mater. Trans. B 51 (2020) 2585–2595.

    Article  Google Scholar 

  20. J. Wang, L. Zhang, Y. Zhang, Q. Ren, H. Duan, Metall. Mater. Trans. B 52 (2021) 2831–2836.

    Article  Google Scholar 

  21. O. Haida, T. Emi, K. Sanbongi, T. Shiraishi, A. Fujiwara, Tetsu-to-Hagane 64 (1978) 1538–1547.

    Article  Google Scholar 

  22. C. Yang, Y. Luan, D. Li, Y. Li, J. Mater. Sci. Technol. 35 (2019) 1298–1308.

    Article  Google Scholar 

  23. C. Zhang, F. Hu, J. Zhou, G. Zhang, W. Zhou, D. Zhang, K. Wu, Steel Res. Int. 94 (2023) 2200946.

    Article  Google Scholar 

  24. W. Chen, L. Zhang, Q. Ren, Q. Wang, X. Cai, Y. Ren, W. Yang, Metall. Mater. Trans. B 52 (2021) 3497–3514.

    Article  Google Scholar 

  25. W. Chen, L. Zhang, Y. Wang, Y. Ren, Q. Ren, W. Yang, Int. J. Heat Mass Transf. 190 (2022) 122789.

    Article  Google Scholar 

  26. L. Zhang, B. Rietow, B.G. Thomas, K. Eakin, ISIJ Int. 46 (2006) 670–679.

    Article  Google Scholar 

  27. D.A. Skobir, M. Godec, M. Balcar, M. Jenko, Vacuum 84 (2009) 205–208.

    Article  Google Scholar 

  28. Q. Zhou, J. Ba, W. Chen, L. Zhang, Metall. Mater. Trans. B 54 (2023) 1565–1581.

    Article  Google Scholar 

  29. W. Liu, X. Zhu, J. Su, Y. Ding, J. Zhou, M. Jiang, X. Wu, Cast Met. 5 (1992) 217–220.

    Article  Google Scholar 

  30. J. Liu, Y. Yang, C. Zhuang, X. Cui, Y. Li, J. Univ. Sci. Technol. Beijing 33 (2011) No. S1, 179–184.

    Google Scholar 

  31. W. Li, H. Shen, X. Zhang, B. Liu, Metall. Mater. Trans. B 45 (2014) 464–471.

    Article  Google Scholar 

  32. Y. Wang, Inclusion evolution in molten and solidifying steel, Carnegie Mellon University, Pittsburgh, USA, 2003.

    Google Scholar 

  33. Y. Wang, M. Valdez, S. Sridhar, Int. J. Mater. Res. 93 (2002) 12–20.

    Google Scholar 

  34. H. Shibata, H. Yin, S. Yoshinaga, T. Emi, M. Suzuki, ISIJ Int. 38 (1998) 149–156.

    Article  Google Scholar 

  35. E. Zinngrebe, C. Van Hoek, H. Visser, A. Westendorp, I.H. Jung, ISIJ Int. 52 (2012) 52–61.

    Article  Google Scholar 

  36. S. Taniguchi, A. Kikuchi, Tetsu-to-Hagane 78 (1992) 527–535.

    Article  Google Scholar 

  37. U. Lindborg, Trans. Metall. Soc. AIME 242 (1968) 94.

    Google Scholar 

  38. P.G. Saffman, J.S. Turner, J. Fluid Mech. 1 (1956) 16.

    Article  Google Scholar 

  39. H. Ling, L. Zhang, H. Li, Metall. Mater. Trans. B 47 (2016) 2991–3012.

    Article  Google Scholar 

  40. S. Taniguchi, A. Kikuchi, T. Ise, N. Shoji, ISIJ Int. 36 (1996) S117–S120.

    Article  Google Scholar 

  41. L. Zhang, Q. Zhou, W. Chen, Y. Wang, L. Zhang, Foundry Technol. 43 (2022) 1051–1057.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support from National Key R&D Program (No. 2023YFB3709900), the National Natural Science Foundation of China (Grant Nos. U22A20171 and 52104343), the Natural Science Foundation of Hebei Province (Grant No. E2021203222) and the High Steel Center (HSC) at Yanshan University and North China University of Technology, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Li-feng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Qy., Ba, Jt., Zhang, L. et al. Aggregation of CeAlO3 inclusions in heavy ingot of a steel containing 0.007% aluminum. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-023-01154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-023-01154-6

Keywords

Navigation