Skip to main content
Log in

Reaction mechanism between Al2O3–MgO refractory materials and rare earth high-carbon heavy rail steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Submerged entry nozzle (SEN) clogging is a major problem affecting the production quality of rare earth steel, and finding a suitable refractory outlet can significantly reduce production costs. To explore the relationship between refractory composition and interface interaction, unprotected coated Al2O3–MgO refractories and SiO2-coated Al2O3–MgO refractories were added to rare earth high-carbon heavy rail steel under laboratory conditions, and the Al2O3–MgO refractory was found to be more suitable. The results show that, from the epoxy resin side to the refractory side, the contour of the refractory interface reaction layer can be divided into two main layers: an iron-rich reaction layer and an iron-poor reaction layer. Calculations based on the spherical model suggest that the adhesion force is proportional to the size of the refractory particles and inclusions, and the same result applies to the surface tension. Controlling the inclusions at a smaller size has a specific effect on alleviating the erosion of refractories. Combined with the erosion mechanism of Al2O3–MgO refractories, the interface reaction mechanism between Al2O3–MgO refractories and molten steel was proposed, which provides ideas for solving SEN clogging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.S. Lee, S.M. Jung, D.J. Min, ISIJ Int. 54 (2014) 827–835.

    Article  Google Scholar 

  2. R. Ordóñez Olivares, C.I. Garcia, A. DeArdo, S. Kalay, F.C. Robles Hernández, Wear 271 (2011) 364–373.

  3. A. Huang, Y.J. Wang, Y.S. Zou, H.Z. Gu, L.P. Fu, Ceram. Int. 44 (2018) 14617‒14624.

    Article  Google Scholar 

  4. W.Q. Ren, L. Wang, Z.L. Xue, C.Z. Li, H.Y. Zhu, A. Huang, C. Li, High Temp. Mater. Process. 40 (2021) 178‒192.

    Article  Google Scholar 

  5. M. Liu, Y.S. Fan, X.L. Gui, J. Hu, X. Wang, G.H. Gao, Metals 12 (2022) 330.

    Article  Google Scholar 

  6. X.W. Zhang, L.F. Zhang, W. Yang, Y.C. Dong, Steel Res. Int. 88 (2017) 1600080.

    Article  Google Scholar 

  7. L.F. Zhang, Y.F. Wang, X.J. Zuo, Metall. Mater. Trans. B 39 (2008) 534‒550.

    Article  Google Scholar 

  8. W. Liang, J. Li, B. Lu, J.G. Zhi, S. Zhang, Y. Liu, J. Iron Steel Res. Int. 29 (2022) 34‒43.

    Article  Google Scholar 

  9. S.Z. Wu, J.M. Zhang, Z.Z. Li, J. Iron Steel Res. Int. 17 (2010) No. 8, 6‒9.

    Article  Google Scholar 

  10. J.T. Liu, L. Zhao, G.Y. Jia, S.J. Wang, J.Y. Cui, H.X. Guo, X.H. Liu, S.W. Zhang, Q.L. Jia, Ceram. Int. 48 (2022) 35398‒35405.

    Article  Google Scholar 

  11. W.W. Zhang, W. Zheng, W. Yan, G.Q. Li, J. Iron Steel Res. Int. 30 (2023) 1743–1754.

    Article  Google Scholar 

  12. Y.Y. Li, G.H. Li, G.P. Liu, Y. Zhao, N. Li, J.F. Chen, Int. J. Appl. Ceram. Technol. 20 (2023) 1978‒1989.

    Article  Google Scholar 

  13. S.K. Chen, M.Y. Cheng, S.J. Lin, Y.C. Ko, Ceram. Int. 28 (2002) 811‒817.

    Article  Google Scholar 

  14. L.Z. Kong, Z.Y. Deng, M.Y. Zhu, Metall. Mater. Trans. B 49 (2018) 1444‒1452.

    Article  Google Scholar 

  15. L.F. Zhang, L.M. Cheng, Y. Ren, J. Zhang, Ceram. Int. 46 (2020) 15674‒15685.

    Article  Google Scholar 

  16. W.J. Yuan, Q.Y. Zhu, C.J. Deng, H.X. Zhu, Ceram. Int. 43 (2017) 6746‒6750.

    Article  Google Scholar 

  17. W.J. Yuan, C.J. Deng, H.X. Zhu, Mater. Chem. Phys. 162 (2015) 724‒733.

    Article  Google Scholar 

  18. W.J. Yuan, Q.Y. Zhu, C.J. Deng, H.X. Zhu, New J. Glass Ceram. 5 (2015) 1‒7.

    Article  Google Scholar 

  19. M.A.L. Braulio, V.C. Pandolfelli, J. Am. Ceram. Soc. 93 (2010) 2981‒2985.

    Article  Google Scholar 

  20. Z.Y. Deng, M.Y. Zhu, D. Sichen, Metall. Mater. Trans. B 47 (2016) 3158‒3167.

    Article  Google Scholar 

  21. Y.C. Ko, J. Am. Ceram. Soc. 83 (2000) 2333‒2335.

    Article  Google Scholar 

  22. S. Kumar, R. Sarkar, Int. J. Appl. Ceram. Technol. 20 (2023) 410‒423.

    Article  Google Scholar 

  23. Y. Wang, Study on the modification/formation of class B nonmetallic inclusions in high carbon hard wire steel by rare earth elements, Guizhou University, Guiyang, China, 2021.

    Google Scholar 

  24. X.H. Huang, Principles of iron and steel metallurgy, 4th ed., Metallurgical Industry Press, Beijing, China, 2013.

    Google Scholar 

  25. S.K. Kwon, J.S. Park, J.H. Park, ISIJ Int. 55 (2015) 2589‒2596.

    Article  Google Scholar 

  26. A. Memarpour, V. Brabie, P. Jönsson, Ironmak. Steelmak. 38 (2011) 229‒239.

    Article  Google Scholar 

  27. S.C. Zhao, F.Y. Shen, Q.Y. Han, G.L. Shao, Iron and Steel (1982) No. 5, 24‒31+23.

  28. W.Z. Mu, C.J. Xuan, Metall. Mater. Trans. B 50 (2019) 2694‒2705.

    Article  Google Scholar 

  29. W.Z. Mu, N. Dogan, K.S. Coley, J. Mater. Sci. 53 (2018) 13203‒13215.

    Article  Google Scholar 

  30. S. Singla, D. Jain, C.M. Zoltowski, S. Voleti, A.Y. Stark, P.H. Niewiarowski, A. Dhinojwala, Sci. Adv. 7 (2021) eabd9410.

  31. B. Zhao, W. Wu, J.G. Zhi, C. Su, J.H. Zhang, Ironmak. Steelmak. 50 (2023) 782‒793.

    Article  Google Scholar 

  32. K.L. Chen, D.Y. Wang, D. Hou, T.P. Qu, J. Tian, H.H. Wang, ISIJ Int. 59 (2019) 1735‒1743.

    Article  Google Scholar 

Download references

Acknowledgements

The authors expressed their gratitude to the State Key Laboratory of Rare Earth Resources Research and Comprehensive Utilization of Baiyun Obo for the open project (Grant No. 2022 (Kehe) 00281) and the Central Government Guidance Local Science and Technology Development Fund Project (Grant No. 2022ZY0124) for supporting this work. This work was financially supported by the National Natural Science Foundation of China (Grant No. 52074179). In addition, thanks are also given to Wuxi Krosaki Sujia Refractories Co., Ltd., China for providing commercial refractories as experimental materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-xun Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Song, Gj., Shen, P. et al. Reaction mechanism between Al2O3–MgO refractory materials and rare earth high-carbon heavy rail steel. J. Iron Steel Res. Int. 31, 1153–1163 (2024). https://doi.org/10.1007/s42243-023-01147-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01147-5

Keywords

Navigation