Skip to main content

Advertisement

Log in

Mechanism of high-energy pulsed current-assisted rolling of 08AL carbon steel ultra-thin strip

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To improve the plastic deformation performance of a 08AL carbon steel ultra-thin strip, a pulsed electric field was integrated into the plastic processing of the ultra-thin strip, and the effects of high-energy current on its deformation ability were investigated. Current-assisted tensile tests were employed, and the results clarified that the pulsed current could reduce the activation energy of faults and promoted dislocation slip within grains and at grain boundaries, leading to a decrease in the deformation resistance of the metal and an increase in its plastic properties. Under the current density of 2.0 A/mm2, the yield strength, tensile strength, and elongation of the rolled sample reached 425 MPa, 467 MPa, and 12.5%, respectively. During the rolling process, it was found that the pulsed current promoted the dynamic recrystallization of the ultra-thin strip, reduced its dislocation density and deformation resistance, and promoted the coordinated deformation of the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Lipiński, Materials 15 (2022) 6170.

    Article  ADS  Google Scholar 

  2. C. Celada-Casero, C. Kwakernaak, J. Sietsma, M.J. Santofimia, Mater. Des. 178 (2019) 107847.

    Article  CAS  Google Scholar 

  3. Y. Liu, M. Li, F. Ju, Int. J. Adv. Manuf. Technol. 89 (2017) 2315–2322.

    Article  Google Scholar 

  4. J. He, M. Liang, H.F. Peng, J.H. Feng, Y.F. Jiang, K.H. Song, R.W. Wang, J.H. Wang, Journal of Hebei University of Technology 50 (2021) No. 2, 30–36.

    Google Scholar 

  5. H. Xiao, Z. Ren, X. Liu, Int. J. Mech. Sci. 133 (2017) 788–793.

    Article  Google Scholar 

  6. Z. Ren, H. Xiao, X. Liu, Z. Yan, ISIJ Int. 58 (2018) 309–315.

    Article  CAS  Google Scholar 

  7. Z. Ren, X. Guo, W. Fan, T. Wang, X. Xiong, J. Mech. Eng. 56 (2020) 73.

    Google Scholar 

  8. X. Liu, J. Mech. Eng. 53 (2017) No. 10, 1–9.

    Article  Google Scholar 

  9. H.R. Dong, X.Q. Li, Y. Li, Y.H. Wang, H.B. Wang, X.Y. Peng, D.S. Li, Int. J. Adv. Manuf. Technol. 120 (2022) 7079–7099.

    Article  Google Scholar 

  10. S. Izadpanah, X. Cao, D. An, X. Li, J. Chen, Adv. Eng. Mater. 25 (2023) 2200425.

    Article  Google Scholar 

  11. T. Wang, X. Wei, H. Zhang, Z. Ren, B. Gao, J. Han, L. Bian, Mater. Sci. Eng. A 840 (2022) 142899.

    Article  CAS  Google Scholar 

  12. B.H. Xing, T. Huang, K.X. Song, L.J. Xu, N. Xiang, X.W. Chen, F.X. Chen, J. Mater. Res. Technol. 21 (2022) 1128–1140.

    Article  CAS  Google Scholar 

  13. Z. Lv, Y. Zhou, L. Zhan, Z. Zang, B. Zhou, S. Qin, Int. J. Adv. Manuf. Technol. 112 (2021) 763–773.

    Article  Google Scholar 

  14. S. Fan, J. Mo, J. Fang, J. Xie, Int. J. Adv. Manuf. Technol. 95 (2018) 2681–2690.

    Article  Google Scholar 

  15. Z. Xu, G. Tang, S. Tian, F. Ding, H. Tian, J. Mater. Process. Technol. 182 (2007) 128–133.

    Article  CAS  Google Scholar 

  16. M. Li, D. Guo, J. Li, S. Zhu, C. Xu, K. Li, Y. Zhao, B. Wei, Q. Zhang, X. Zhang, Mater. Sci. Eng. A 722 (2018) 93–98.

    Article  CAS  Google Scholar 

  17. R.F. Zhu, G.Y. Tang, S.Q. Shi, M.W. Fu, Mater. Des. 44 (2013) 606–611.

    Article  CAS  Google Scholar 

  18. X. Guo, Z. Ren, X. Ma, N. Li, L. Bian, T. Wang, J. Manuf. Process. 64 (2021) 664–673.

    Article  Google Scholar 

  19. Z. Ren, X. Guo, X. Liu, X. Ma, S. Jiang, L. Bian, T. Wang, Q. Huang, Mater. Sci. Eng. A 850 (2022) 143583.

    Article  CAS  Google Scholar 

  20. Z. Ren, X. Guo, N. Li, H. Li, Z.G. Wang, T. Wang, J. Mech. Eng. 56 (2021) 1–11.

    Google Scholar 

  21. F. Yin, S. Ma, S. Hu, Y. Liu, L. Hua, G.J. Cheng, Mater. Sci. Eng. A 869 (2023) 144815.

    Article  CAS  Google Scholar 

  22. Z. Zhang, F. Wang, F. Yin, D. Qian, X. Liu, M. Wu, J. Mater. Res. Technol. 23 (2023) 4909–4921.

    Article  CAS  Google Scholar 

  23. A.A. Kopanev, Strength Mater. 23 (1991) 55–59.

    Article  Google Scholar 

  24. D. Qian, Y. Liu, H. Ren, F. Wang, M. Wu, S. Deng, J. Mater. Res. Technol. 20 (2022) 496–507.

    Article  CAS  Google Scholar 

  25. G. Hu, C. Shek, Y. Zhu, G. Tang, X. Qing, Mater. Trans. 51 (2010) 1390–1394.

    Article  CAS  Google Scholar 

  26. W. Fan, Z. Ren, S. Wei, Q. Liu, T. Wang, G. Wu, Mater. Sci. Eng. A (2023) 145364.

    Article  Google Scholar 

  27. H. Tian, J. Zhao, R. Zhao, W. He, B. Meng, M. Wan, Int. J. Plast. 167 (2023) 103656.

    Article  CAS  Google Scholar 

  28. X. Li, S. Wang, S. Zhao, W. Ding, J. Chen, G. Wu, J. Mater. Eng. Perform. 24 (2015) 5065–5070.

    Article  CAS  Google Scholar 

  29. D. Pan, Y. Wang, Y. Zhao, X. Xu, X. Chong, P. Yin, Mater. Lett. 252 (2019) 264–267.

    Article  CAS  Google Scholar 

  30. Z. Zhao, G. Wang, Y. Zhang, Y. Wang, H. Hou, J. Alloy. Compd. 786 (2019) 733–741.

    Article  CAS  Google Scholar 

  31. X. Ma, C. Huang, J. Moering, M. Ruppert, H.W. Höppel, M. Göken, J. Narayan, Y. Zhu, Acta Mater. 116 (2016) 43–52.

    Article  CAS  ADS  Google Scholar 

  32. C. Bunget, W.A. Salandro, L. Mears, Proc. Inst. Mech. Eng. B 225 (2011) 1692–1702.

    Article  Google Scholar 

  33. H. Song, Z.J. Wang, Mater. Sci. Eng. A 490 (2008) 1–6.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51974196, 52275361, and 52105390), Open Research Fund from National Key Laboratory of Metal Forming Technology and Heavy Equipment (S2308100.W01), Natural Science Foundation of Shanxi Province (No. 20210302124426), and Special Funds for the Central Government to Guide Local Science and Technology Development (No. YDZX20191400002149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Zk., Xu, Yn., Chen, Jz. et al. Mechanism of high-energy pulsed current-assisted rolling of 08AL carbon steel ultra-thin strip. J. Iron Steel Res. Int. 31, 416–427 (2024). https://doi.org/10.1007/s42243-023-01132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01132-y

Keywords

Navigation