Skip to main content

Advertisement

Log in

Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Residual stress in high-carbon steel affects the dimensional accuracy, structural stability, and integrity of components. Although the evolution of residual stress under an electric field has received extensive attention, its elimination mechanism has not been fully clarified. In this study, it was found that the residual stress of high-carbon steel could be effectively relieved within a few minutes through the application of a low density pulse current. The difference between the current pulse treatment and traditional heat treatment in reducing residual stress is that the electric pulse provides additional Gibbs free energy for the system, which promotes dislocation annihilation and carbon atom diffusion to form carbides, thus reducing the free energy of the system. The electroplastic and thermal effects of the pulse current promoted the movement of dislocations under the electric field, thus eliminating the internal stress caused by dislocation entanglement. The precipitation of carbides reduced the carbon content of the steel matrix and lattice shrinkage, thereby reducing the residual tensile stress. Considering that a pulsed current has the advantages of small size, small power requirement, continuous output, and continuously controllable parameters, it has broad application prospects for eliminating residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Gumao, Generation and Countermeasures of Residual Stress (Machinery Industry Press, Beijing, 1983)

    Google Scholar 

  2. J.Q. Hao, H.X. Zhang, X.F. Zhang, C.B. Liu, Steel Res. Int. 91, 2000041 (2020)

    CAS  Google Scholar 

  3. L. Huang, R. Zhang, X. Zhou, Y. Tu, J. Jiang, J. Appl. Phys. 126, 245102 (2019)

    Google Scholar 

  4. R.A. Savrai, A.V. Makarov, I.Y. Malygina, E.G. Volkova, Mater. Sci. Eng. A 734, 506 (2018)

    CAS  Google Scholar 

  5. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57, 268 (2012)

    CAS  Google Scholar 

  6. Y.J. Cao, J.Q. Sun, F. Ma, Y.Y. Chen, X.Z. Cheng, X. Gao, K. Xie, Tribol. Int. 115, 108 (2017)

    CAS  Google Scholar 

  7. S. Sackl, H. Leitner, H. Clemens, S. Primig, Mater. Charact. 120, 323 (2016)

    CAS  Google Scholar 

  8. Y. Wei, X. Yu, Y. Su, X. Shen, Y. Xia, W. Yang, J. Mater. Res. Technol. 10, 651 (2021)

    CAS  Google Scholar 

  9. X.B. Liu, W.J. Lu, X.F. Zhang, Acta Mater. 183, 51 (2020)

    CAS  Google Scholar 

  10. W.J. Lu, X.F. Zhang, R.S. Qin, Mater. Sci. Technol. 31, 1530 (2015)

    CAS  Google Scholar 

  11. S.Q. Xiang, X.F. Zhang, Mater. Sci. Eng. A 761, 138026 (2019)

    CAS  Google Scholar 

  12. R.S. Qin, Mater. Sci. Technol. 31, 203 (2014)

    Google Scholar 

  13. Y. Jiang, G. Tang, C. Shek, Y. Zhu, Z. Xu, Acta Mater. 57, 4797 (2009)

    CAS  Google Scholar 

  14. Z. Xu, G. Tang, S. Tian, F. Ding, H. Tian, J. Mater. Process. Technol. 182, 128 (2007)

    CAS  Google Scholar 

  15. Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, G.Y. Tang, Mater. Sci. Eng. A 501, 125 (2009)

    Google Scholar 

  16. J. Zhang, Z. Liu, J. Sun, H. Zhao, Q. Shi, D. Ma, Mater. Sci. Eng. A 782, 139213 (2020)

    CAS  Google Scholar 

  17. Y. Wang, G. Chen, Z. Chen, H. Wan, H. Xiao, X. Chang, Mater. Sci. Eng. A 841, 143066 (2022)

    CAS  Google Scholar 

  18. L. Lobanov, V. Pivtorak, N. Paschin, V. Savitsky, G. Tkachuk, Adv. Mater. Res. 996, 386 (2014)

    Google Scholar 

  19. L. Pan, W. He, B. Gu, Mater. Sci. Eng. A 662, 404 (2016)

    CAS  Google Scholar 

  20. L. Pan, B. Wang, Z. Xu, J. Alloys Compd. 792, 994 (2019)

    CAS  Google Scholar 

  21. G. Stepanov, A. Babutskii, I. Mameev, Strength Mater. 41, 623 (2009)

    CAS  Google Scholar 

  22. L. Pan, J. Phys. Conf. Ser. 1187, 032054 (2019)

    Google Scholar 

  23. X. Song, F. Wang, D. Qian, L. Hua, Mater. Sci. Eng. A 780, 139171 (2020)

    CAS  Google Scholar 

  24. V.Y. Kravchenko, Sov. Phys. JETP 24, 1135 (1967)

    Google Scholar 

  25. A. Roshchupkin, V. Miloshenko, V. Kalinin, Fiz. Tverd. Tela 21, 909 (1979)

    CAS  Google Scholar 

  26. X. Huang, Mater. Sci. Eng. A 528, 6287 (2011)

    Google Scholar 

  27. K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng. 45, 109 (1980)

    CAS  Google Scholar 

  28. G. S. Schajer, Practical Residual Stress Measurement methods (John Wiley & Sons, 2013)

  29. G. Williamson, W. Hall, Acta Metall. 1, 22 (1953)

    CAS  Google Scholar 

  30. J.E. Bailey, P.B. Hirsch, Philos. Mag. 5, 485 (1960)

    CAS  Google Scholar 

  31. H. Mecking, U. Kocks, Acta Metall. 29, 1865 (1981)

    CAS  Google Scholar 

  32. A.T.W. Barrow, J.H. Kang, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 60, 2805 (2012)

    CAS  Google Scholar 

  33. J. Zhang, Z. Dai, L. Zeng, X. Zuo, J. Wan, Y. Rong, N. Chen, J. Lu, H. Chen, Acta Mater. 217, 117176 (2021)

    CAS  Google Scholar 

  34. S.Q. Xiang, X.F. Zhang, Acta Metall. Sin. -Engl. Lett. 33, 281 (2019)

    Google Scholar 

  35. H. Krishnaswamy, M.J. Kim, S.T. Hong, D. Kim, J.H. Song, M.G. Lee, H.N. Han, Mater. Des. 124, 131 (2017)

    CAS  Google Scholar 

  36. M.J. Kim, K. Lee, K.H. Oh, I.S. Choi, H.H. Yu, S.T. Hong, H.N. Han, Scr. Mater. 75, 58 (2014)

    CAS  Google Scholar 

  37. H.J. Jeong, J.W. Park, K.J. Jeong, N.M. Hwang, S.T. Hong, H.N. Han, Int. J. Precis. Eng. Manuf. Technol. 6, 315 (2019)

    Google Scholar 

  38. M.J. Kim, S. Yoon, S. Park, H.J. Jeong, J.W. Park, K. Kim, J. Jo, T. Heo, S.T. Hong, S.H. Cho, Appl. Mater. Today 21, 100874 (2020)

    Google Scholar 

  39. X. Li, Q. Zhu, Y. Hong, H. Zheng, J. Wang, J. Wang, Z. Zhang, Nat. Commun. 13, 6503 (2022)

    CAS  Google Scholar 

  40. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Mater. 54, 5323 (2006)

    CAS  Google Scholar 

  41. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51, 1789 (2003)

    CAS  Google Scholar 

  42. C. Bellot, P. Lamesle, D. Delagnes, Acta. Metall. Sin. 26, 553 (2013)

    CAS  Google Scholar 

  43. Y. Dolinsky, T. Elperin, Phys. Rev. B 50, 52 (1994)

    CAS  Google Scholar 

  44. T. Masumura, T. Taniguchi, S. Uranaka, I. Hirashima, T. Tsuchiyama, N. Maruyama, H. Shirahata, R. Uemori, ISIJ Int. 61, 1708 (2021)

    CAS  Google Scholar 

  45. Y. Ohmori, S. Sugisawa, Trans. JPN. Inst. Met. 12, 170 (1971)

    CAS  Google Scholar 

  46. J.Y. Gao, X.B. Liu, H.F. Zhou, X.F. Zhang, Acta Metall Sin. -Engl. Lett. 31, 1233 (2018)

    CAS  Google Scholar 

  47. Y. Jiang, G. Tang, L. Guan, S. Wang, Z. Xu, C. Shek, Y. Zhu, J. Mater. Res. 23, 2685 (2008)

    CAS  Google Scholar 

  48. N.B. Dhokey, A. Hake, S. Kadu, I. Bhoskar, G.K. Dey, Metall. Mater. Trans. A 45, 1508 (2013)

    Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Natural Science Foundation of Beijing Municipality (2222065), the National Natural Science Foundation of China (U21B2082), and Fundamental Research Funds for the Central Universities (FRF-TP-22-02C2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfang Zhang.

Ethics declarations

Conflict of interest

The authors state that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, K., Xiang, S., Zhou, M. et al. Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current. Acta Metall. Sin. (Engl. Lett.) 36, 1511–1522 (2023). https://doi.org/10.1007/s40195-023-01556-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-023-01556-1

Keywords

Navigation