Skip to main content

Advertisement

Log in

Multi-performance evaluation of high-throughput accelerated corrosion test for high-strength low-alloy 921A steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The corrosion behavior of high-strength low-alloy 921A steel in a simulated marine atmospheric environment was studied using a high-throughput experimental method. The corrosion behavior, corrosion morphology, and corrosion products of 921A steels were analyzed using various techniques, including corrosion mass loss method, polarization curve, white-light interferometry, scanning electron microscopy, energy-dispersive spectrometry, microbeam X-ray fluorescence spectrometry, X-ray diffraction technique, and X-ray photoelectron spectroscopy. The test results indicated that 921A steel exhibits better corrosion resistance than Q450NQR1 steel in simulated harsh atmospheric environments, as evidenced by a lower corrosion mass loss rate throughout the corrosion tests. The corrosion products of both steels consisted of α-FeOOH, Fe3O4, and γ-FeOOH, with α-FeOOH being more prevalent in the rust layer of 921A steel than in Q450NQR1 steel. The inner rust layer of 921A steel also exhibited an appositional enrichment region of Cr, Ni, Mo, and V, leading to its superior corrosion resistance compared to that of Q450NQR1 steel. The efficacy of high-throughput accelerated corrosion experimental methods was highlighted for evaluating the corrosion resistance of steel materials in harsh environmental conditions. The findings suggest that 921A steel exhibits better corrosion resistance compared to Q450NQR1 steel and has the potential to be more suitable in harsh marine atmospheric environments. The characterization of the rust layer structures and composition reveals the parallel enrichment of certain elements in the inner rust layer of 921A steel, which enhances its corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Z. Wang, Z. Zhou, W. Xu, D. Yang, Y. Xu, L. Yang, J. Ren, Y. Li, Y. Huang, Environ. Sci. Pollut. Res. 28 (2021) 54403–54428.

    Article  Google Scholar 

  2. W. Wu, X. Cheng, J. Zhao, X. Li, Corros. Sci. 165 (2020) 108416.

    Article  Google Scholar 

  3. N. You, J. Shi, Y. Zhang, Corros. Sci. 175 (2020) 108874.

    Article  Google Scholar 

  4. S. Caines, F. Khan, J. Shirokoff, W. Qiu, J. Loss Prev. Process Ind. 33 (2015) 39–51.

    Article  Google Scholar 

  5. S. Palraj, M. Selvaraj, K. Maruthan, M. Natesan, J. Marine Sci. Appl. 14 (2015) 105–112.

    Article  Google Scholar 

  6. X.Z. Ma, L.D. Meng, X.K. Cao, X.X. Zhang, Z.H. Dong, Corros. Sci. 204 (2022) 110389.

    Article  Google Scholar 

  7. T. Zhang, Y. Li, X. Li, C. Liu, S. Yang, Z. Yang, X. Li, Corros. Sci. 208 (2022) 110708.

    Article  Google Scholar 

  8. B. Dong, W. Liu, L. Chen, T. Zhang, Y. Fan, Y. Zhao, H. Li, W. Yang, Y. Sun, Corros. Sci. 209 (2022) 110741.

    Article  Google Scholar 

  9. T. Zhang, X. Xu, Y. Li, X. Lv, Constr. Build. Mater. 277 (2021) 122298.

    Article  Google Scholar 

  10. M. Sun, C. Du, Z. Liu, C. Liu, X. Li, Y. Wu, Corros. Sci. 186 (2021) 109427.

    Article  Google Scholar 

  11. H. Wu, H. Lei, Y.F. Chen, J. Qiao, Constr. Build. Mater. 211 (2019) 228–243.

    Article  Google Scholar 

  12. J. Jia, X. Cheng, X. Yang, X. Li, W. Li, Constr. Build. Mater. 259 (2020) 119760.

    Article  Google Scholar 

  13. X. Lu, Y. Liu, M. Liu, Z. Wang, J. Mater. Sci. Technol. 35 (2019) 1831–1839.

    Article  Google Scholar 

  14. W. Wu, W. Hao, Z. Liu, X. Li, C. Du, Constr. Build. Mater. 239 (2020) 117903.

    Article  Google Scholar 

  15. O. Poupard, V. L'Hostis, S. Catinaud, I. Petre-Lazar, Cem. Concr. Res. 36 (2006) 504–520.

    Article  Google Scholar 

  16. D. Pradhan, G.S. Mahobia, K. Chattopadhyay, V. Singh, J. Alloy. Compd. 740 (2018) 250–263.

    Article  Google Scholar 

  17. Z.Y. Liu, W.K. Hao, W. Wu, H. Luo, X.G. Li, Corros. Sci. 148 (2019) 388–396.

    Article  Google Scholar 

  18. Y. Liu, M. Liu, X. Lu, Z. Wang, Mater. Chem. Phys. 277 (2022) 124962.

    Article  Google Scholar 

  19. Y. Fan, W. Liu, S. Li, T. Chowwanonthapunya, B. Wongpat, Y. Zhao, B. Dong, T. Zhang, X. Li, J. Mater. Sci. Technol. 39 (2020) 190–199.

    Article  Google Scholar 

  20. W.Z. Wei, K.M. Wu, J. Liu, L. Cheng, X. Zhang, J. Iron Steel Res. Int. 28 (2021) 453–463.

    Article  Google Scholar 

  21. T. Zhang, W. Liu, B. Dong, W. Yang, L. Chen, Y. Sun, H. Li, B. Zhang, Corros. Sci. 216 (2023) 111107.

    Article  Google Scholar 

  22. S.Z. Ma, L.J. Sun, H.Y. Sun, H.B. Sun, J.F. Jiang, Y.X. Yin, S.F. Qu, Z.H. Liu, S.X. Xu, J. Iron Steel Res. Int. 29 (2022) 1694–1709.

    Article  Google Scholar 

  23. M.F. Zuo, Y.L. Chen, Z.L. Mi, Y.D. Wang, H.T. Jiang, J. Iron Steel Res. Int. 26 (2019) 1000–1010.

    Article  Google Scholar 

  24. K. Tsuji, T. Matsuno, Y. Takimoto, M. Yamanashi, N. Kometani, Y.C. Sasaki, T. Hasegawa, S. Kato, T. Yamada, T. Shoji, N. Kawahara, Spectrochim. Acta Part B 113 (2015) 43–53.

    Article  Google Scholar 

  25. Z.W. Lian, T.E. Peng, S. Hu, B. He, X.W. Hu, T. Zhu, B. Jiang, J. Iron Steel Res. Int. 30 (2023) 580–590.

    Article  Google Scholar 

  26. Q. Yu, X. Yang, W. Dong, Q. Wang, F. Zhang, X. Gu, Corros. Sci. 195 (2022) 109988.

    Article  Google Scholar 

  27. Y. Zhou, J. Chen, Y. Xu, Z. Liu, J. Mater. Sci. Technol. 29 (2013) 168–174.

    Article  Google Scholar 

  28. I. Diaz, H. Cano, D. de la Fuente, B. Chico, J.M. Vega, M. Morcillo, Corros. Sci. 76 (2013) 348–360.

    Article  Google Scholar 

  29. X. Zhang, S. Yang, W. Zhang, H. Guo, X. He, Corros. Sci. 82 (2014) 165–172.

    Article  Google Scholar 

  30. Y.S. Choi, J.J. Shim, J.G. Kim, J. Alloy. Compd. 391 (2005) 162–169.

    Article  Google Scholar 

  31. G.P. Halada, C.R. Clayton, J. Electrochem. Soc. 138 (1991) 2921–2927.

    Article  Google Scholar 

  32. D. Kong, X. Ni, C. Dong, L. Zhang, C. Man, J. Yao, K. Xiao, X. Li, Electrochim. Acta 276 (2018) 293–303.

    Article  Google Scholar 

  33. H. Tamura, Corros. Sci. 50 (2008) 1872–1883.

    Article  Google Scholar 

  34. M. Kimura, H. Kihira, N. Ohta, M. Hashimoto, T. Senuma, Corros. Sci. 47 (2005) 2499–2509.

    Article  Google Scholar 

  35. L.W. Xu, H.B. Li, H.B. Zheng, P.C. Lu, H. Feng, S.C. Zhang, W.C. Jiao, Z.H. Jiang, J. Iron Steel Res. Int. 27 (2020) 1466–1475.

    Article  Google Scholar 

  36. Y. Hou, Z. Xu, G. Li, J. Iron Steel Res. Int. (2023) https://doi.org/10.1007/s42243-022-00890-5.

    Article  Google Scholar 

  37. E.F. Daniel, C. Li, C. Wang, J. Dong, I.I. Udoh, P.C. Okafor, D. Zhang, W. Zhong, S. Zhong, J. Mater. Sci. Technol. 135 (2023) 250–264.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Key Research and Development Program of China (Grant No. 2021YFB3702103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-yang Li or Hai-zhou Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Cc., Qin, Mh., Wu, Zf. et al. Multi-performance evaluation of high-throughput accelerated corrosion test for high-strength low-alloy 921A steel. J. Iron Steel Res. Int. 31, 1260–1278 (2024). https://doi.org/10.1007/s42243-023-01058-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01058-5

Keywords

Navigation