Skip to main content
Log in

Kinetics of atmospheric corrosion of mild steel in marine and rural environments

  • Published:
Journal of Marine Science and Application Aims and scope Submit manuscript

Abstract

In continuation of the extensive studies carried out to update the corrosion map of India, in this study, the degradation of mild steel by air pollutants was studied at 16 different locations from Nagore to Ammanichatram along the east coast of Tamilnadu, India over a period of two years. The weight loss study showed that the mild steel corrosion was more at Nagapattinam site, when compared to Ammanichatram and Maravakadu sites. A linear regression analysis of the experimental data was attempted to predict the mechanism of the corrosion. The composition of the corrosion products formed on the mild steel surfaces was identified by XRD technique. The corrosion rate values obtained are discussed in the light of the weathering parameters, atmospheric pollutants such as salt content & SO2 levels in the atmosphere, corrosion products formed on the mild steel surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM International (1990). ASTM G1-90: Standard practice for preparing, cleaning and evaluating corrosion test specimens. American Society for Testing and Materials, Philadelphia, USA.

    Google Scholar 

  • Barton K (1976). Protection against atmospheric corrosion. Wiley, London.

    Google Scholar 

  • Cao CN (2005). Corrosion in natural environment of materials in China. 1st ed. Chemical Industry Press, Beijing, China, 69. (in Chinese)

    Google Scholar 

  • Cook DC (2005). Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments. Corrosion Science, 47(10), 2550–2570. DOI: 10.1016/j.corsci.2004.10.018

    Article  Google Scholar 

  • Evans UR (1969). Mechanism of rusting. Corrosion Science, 9(11), 813–821. DOI: 10.1016/S0010-938X(69)80074-0

    Article  Google Scholar 

  • Feliu S, Morcillo M, Jr Feliu S (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts. Corrosion Science, 34(3), 415–422. DOI: 10.1016/0010-938X(93)90113-U

    Article  Google Scholar 

  • ISO (1992a). ISO 9223-1992: Corrosion of metals and alloys; Corrosivity of atmospheres; Classification. International Organization for Standardization.

    Google Scholar 

  • ISO (1992b). ISO 9225: 1992—Corrosion of metals and alloys, corrosivity of atmospheres, measurement of pollution. International Organization for Standardization.

    Google Scholar 

  • ISO (1992c). ISO 9226: 1992—Corrosion of metals and alloys, corrosivity of atmospheres, determination of corrosion rate of standard specimens for the revaluation of corrosivity. International Organization for Standardization.

    Google Scholar 

  • Ke W (2003). Chinese corrosion survey report. Chemical Industry Press, Beijing, China, 13. (in Chinese)

    Google Scholar 

  • Keiser JT, Brown CW, Heidersbach RH (1983). Characterization of passive film formed on weathering steels. Corrosion Science, 23(3), 251–259. DOI: 10.1016/0010-938X(83)90106-3

    Article  Google Scholar 

  • Lan TTN, Nishimura R, Tsujino Y, Satoh Y, Thoa NTP, Yokoi M, Maeda Y (2005). The effects of air pollution and climatic factors on atmospheric corrosion of marble under field exposure. Corrosion Science, 47(4), 1023–1038. DOI: 10.1016/j.corsci.2004.06.013

    Article  Google Scholar 

  • Marco JF, Gracia M, Gancedo JR (2000). Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the Antarctic and Easter Island. Corrosion Science, 42(4), 753–771. DOI: 10.1016/S0010-938X(99)00090-6

    Article  Google Scholar 

  • Misawa T, Asami K, Hashimoto K (1974). The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel. Corrosion Science, 14(4), 279–289. DOI: 10.1016/S0010-938X(74)80037-5

    Article  Google Scholar 

  • Mendoza AR, Corvo F (1999). Outdoor and indoor atmospheric corrosion of carbon steel. Corrosion Science, 41(1), 75–86. DOI: 10.1016/S0010-938X(98)00081-X

    Article  Google Scholar 

  • Natesan M, Palaniswamy N, Rengaswamy NS (2006a). Atmospheric corrosivity survey of India. Materials Performance, 45(1), 52–56.

    Google Scholar 

  • Natesan M, Palraj S, Venkatachari G, Palaniswamy N (2006b). Atmospheric corrosion of engineering materials at two exposure sites in Chennai—A comparative study. Corrosion, 62(10), 883–891. DOI: 10.5006/1.3279898

    Article  Google Scholar 

  • Natesan M, Selvaraj M, Maruthan K, Rajendran P (2005a). Using organic coatings to protect mild steel in a viscose industrial atmosphere. Materials Performance, 44(12), 30–34.

    Google Scholar 

  • Natesan M, Venkatachari G, Palaniswamy N (2005b). Corrosivity and durability maps of India. Corrosion Prevention and Control, 52(2), 43–54. DOI: 10.1515/CORRREV.2009.27.S1.61

    Google Scholar 

  • Natesan M, Venkatachari G, Palaniswamy N (2006c). Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India. Corrosion Science, 48(11), 3584–3608. DOI: 10.1016/j.corsci.2006.02.006

    Article  Google Scholar 

  • Oh SJ, Cook DC, Townsend HE (1999). Atmospheric corrosion of different steels in marine, rural and industrial environments. Corrosion Science, 41(9), 1687–1702. DOI: 10.1016/S0010-938X(99)00005-0

    Article  Google Scholar 

  • Philip A, Schweitaer PE (1999). Atmospheric degradation and corrosion control. Marcel Dekker Inc. Press, New York, USA.

    Google Scholar 

  • Raman A, Razvan A, Kuban B (1986). Characteristics of the rust from weathering steels in Louisiana Bridge Spans. Corrosion, 42(8), 447–455. DOI: http://dx.doi.org/10.5006/1.3583050

    Article  Google Scholar 

  • Rao KNP, Lahiri AK (1970). Corrosion map of India. Corrosion Advisary Bureau, Metals Research Committee, Counc. Sci. Ind. Res., Tata Iron & Steel Co. Ltd., Jamshedpur, India, 48.

    Google Scholar 

  • Rozenfeld IL (1972). Atmospheric corrosion of metals. National Association of Corrosion Engineers, Houston, USA.

    Google Scholar 

  • Santana Rodríguez JJ, Santana Hernández FJ, González González JE (2002). XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain). Corrosion Science, 44(11), 2425–2438. DOI: 10.1016/S0010-938X(02)00047-1

    Article  Google Scholar 

  • Suzuki I, Masuko N, Hisamatsu Y (1979). Electrochemical properties of iron rust. Corrosion Science, 19(8), 521–535. DOI: 10.1016/S0010-938X(79)80057-8

    Article  Google Scholar 

  • Tidblad J, Mikhailov AA, Kucera V (2000). Model for the prediction of the time of wetness from average, annual data on relative air humidity and air temperature. Protection of Metals, 36(6), 533–540. DOI: 10.1023/A:1026621009635

    Article  Google Scholar 

  • Tran TNL, Nguyen TPT, Nishimura R, Tsujino Y, Yokoi M, Maeda Y (2006). Atmospheric corrosion of carbon steel under field exposurein the southern part of Vietnam. Corrosion Science, 48(1), 179–192. DOI: 10.1016/j.corsci.2004.11.018

    Article  Google Scholar 

  • Uhlig HH (1950). Cost of corrosion in the United States. Corrosion, 6(1), 29–33.

    Article  MathSciNet  Google Scholar 

  • Yamashita M, Misawa T, Oh SJ, Balasubramanian R, Cook DC (2000). Mossbauer spectroscopic study of X-ray amorphous substance in the rust layer of weathering steel subjected to long term exposure in North America. Corrosion Engineering, 49(2), 133–144.

    Google Scholar 

  • Ma Yuantai, Li Ying, Wang Fuhui (2009). Corrosion of low carbon steel in atmospheric environments of different chloride content. Corrosion Science, 51(5), 997–1006. DOI: 10.1016/j.corsci.2009.02.009

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Palraj.

Additional information

Foundation item: M/s IRCON International Pvt, Ltd, Muthupettai, Tamilnadu, Sponsored project No: SSP09/06.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palraj, S., Selvaraj, M., Maruthan, K. et al. Kinetics of atmospheric corrosion of mild steel in marine and rural environments. J. Marine. Sci. Appl. 14, 105–112 (2015). https://doi.org/10.1007/s11804-015-1286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11804-015-1286-x

Keywords

Navigation