Skip to main content

Advertisement

Log in

Research status and development of extraction process of zinc-bearing dust from ironmaking and steelmaking—a critical review

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Almost 29.57–38.46 million tons of zinc-bearing dust were produced in Chinese iron and steel enterprises annually. The recovery of Zn and other metals in zinc-bearing dust from ironmaking and steelmaking could improve economic efficiency. However, zinc-bearing dust was classified as hazardous waste, and the volatile metals (like Zn, Na, Pb, etc.) in zinc-bearing dust limited the direct reusing in a blast furnace. Therefore, the formation process, fundamental characteristics, and current extraction process of Zn from zinc-bearing dust, associated with thermodynamics and kinetics of the pyrometallurgical process, hydrometallurgical process, and pyro-hydrometallurgical process, were analyzed. It is indicated that industrialized pyrometallurgical processes are undergoing high energy consumption and pollution such as rotary kiln and rotary hearth furnace process. The vacuum carbothermal reduction process can realize low carbon emission and no waste produced in the process. The hydrometallurgical leaching processes in strong acid, strong alkali, and ammonium solutions result in serious liquid pollution and equipment corrosion. The pyrometallurgical process involves complex kinetics and lacks kinetic research on semi-industrialization and industrialization. Water-soluble components in zinc-bearing dust can be removed by water leaching. The kinetics of the strong acid leaching is mainly controlled by the leaching kinetics of Fe2O3 and ZnFe2O4, while the alkali leaching and weak acid leaching are controlled by the kinetics of ZnO leaching. Zn in the zinc-bearing dust can be extracted by a low-temperature sodium roasting–weak acid leaching process that reduces equipment corrosion and environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. X.F. Yu, Q.G. Xue, J.S. Wang, L.T. Kong, Ironmaking 29 (2010) 56–62.

    Google Scholar 

  2. X.Y. Ma, J. Peng, F. Zhang, H.T. Chang, China Foundry Machinery and Technology 56 (2021) 53–60.

    Google Scholar 

  3. R.S. Zhu, X.T. Bo, Z. Wu, T.F. Yi, Z.Y. Xia, Chinese Journal of Environmental Engineering 10 (2016) 3825–3829.

    Google Scholar 

  4. E. Amdeha, R.S. Mohamed, A.S. Dhmees, Ceram. Int. 47 (2021) 23014–23027.

    Article  Google Scholar 

  5. X. Li, P. Tang, P. He, X.Q. Zhu, G.H. Wen, Metall. Mater. Trans. B 51 (2020) 2400–2412.

    Article  Google Scholar 

  6. Y. Li, H. Feng, J. Wang, X.F. She, G. Wang, H.B. Zuo, Q.G. Xue, J. Clean. Prod. 367 (2022) 132909.

    Article  Google Scholar 

  7. D.J.C. Stewart, A.R. Barron, Resour. Conserv. Recycl. 157 (2020) 104746.

    Article  Google Scholar 

  8. X. Xiao, S. Zhang, F. Sher, J.B. Chen, Y.T. Xin, Z.X. You, L.Y. Wen, M.L. Hu, G.B. Qiu, J. Sustain. Metall. 7 (2021) 340–357.

    Article  Google Scholar 

  9. X. Li, P. Tang, J. Jiang, Q. Fu, G.H. Wen, ISIJ Int. 61 (2021) 763–772.

    Article  Google Scholar 

  10. C. Peng, Z. Guo, F. Zhang, ISIJ Int. 48 (2008) 1398–1403.

    Article  Google Scholar 

  11. Y.W. Yu, Z.M. Wang, H. Wei, Y. Li, Q.S. Song, Z.J. Zheng, Ironmak. Steelmak. 46 (2019) 193–198.

    Article  Google Scholar 

  12. Y.Z. Wang, Z.J. Liu, J.L. Zhang, R. Mao, Y.P. Zhang, J. Hazard. Mater. 381 (2020) 120902.

    Article  Google Scholar 

  13. R.M. Shi, H. Wu, H. Liu, B.X. Wang, Y. She, C. Zou, J.F. Zheng, Q. Gao, Korean J. Chem. Eng. 39 (2022) 1339–1349.

    Article  Google Scholar 

  14. Y.L. Wu, Z.Y. Jiang, X.X. Zhang, P. Wang, X.F. She, Int. J. Miner. Metall. Mater. 20 (2013) 636–644.

    Article  Google Scholar 

  15. D.K. Xia, C.A. Pickles, Miner. Eng. 13 (2000) 79–94.

    Article  Google Scholar 

  16. P. Liptai, B. Dolník, J. Briančin, T. Havlik, Waste Biomass Valori. 11 (2020) 4419–4428.

    Article  Google Scholar 

  17. E.V. Genderen, M. Wildnauer, N. Santero, N. Sidi, Int. J. Life Cycle Assess 21 (2016) 1580–1593.

    Article  Google Scholar 

  18. X.L. Li, Z.W. Peng, J.X. Yan, Z.Z. Li, J.Y. Hwang, Y.B. Zhang, G.H. Li, T. Jiang, J. Clean. Prod. 149 (2017) 1079–1100.

    Article  Google Scholar 

  19. T. Suetens, B. Klaasen, K.V. Acker, B. Blanpain, J. Clean. Prod. 65 (2014) 150–167.

    Article  Google Scholar 

  20. K. Binnemans, P.T. Jones, Á.M. Fernández, V.M. Torres, J. Sustain. Metall. 6 (2020) 505–540.

    Article  Google Scholar 

  21. Y. Xue, X.S. Hao, X.M. Liu, N. Zhang, Materials 15 (2022) 4127.

    Article  Google Scholar 

  22. J. Wang, Study on the characteristics of sintering flue gas dust and optimization of the dust removal system, North China University of Science and Technology, Tangshan, China, 2018.

    Google Scholar 

  23. J. Zhang, L.P. Gao, C.H. Zhen, Y.M. Chen, in: Proceedings of CSM2007 Annual Meeting China Steel, Chengdu, China, 2007, pp. 13–58.

  24. S. Kelebek, S. Yörük, B. Davis, Miner. Eng. 17 (2004) 285–291.

    Article  Google Scholar 

  25. W.F. Li, R. Zhu, C. Feng, B.C. Han, G.S. Wei, J. Iron Steel Res. Int. 28 (2021) 1105–1113.

    Article  Google Scholar 

  26. J. Chen, Iron and Steel 51 (2016) 89–94.

    Google Scholar 

  27. X.T. Hu, Z.W. Yang, C.G. Xu, China Metallurgy 28 (2018) 59–62.

    Google Scholar 

  28. Y.J. Zhang, Y.M. Yin, H.Y. Li, Q.D. Hu, The Chinese Journal of Process Engineering 21 (2021) 1323–1329.

    Google Scholar 

  29. T. Zhang, Research on the characteristics of fume dust from converter dry dedusting technology, North China University of Science and Technology, Tangshan, China, 2016.

    Google Scholar 

  30. J. Wang, Y.Y. Zhang, K.K. Cui, T. Fu, J.J. Gao, S. Hussain, T.S. Algarni, J. Clean. Prod. 298 (2021) 126788.

    Article  Google Scholar 

  31. S.Q. Shi, F. Gao, H.G. Xiao, M.Q. Chen, Journal of University of Science and Technology Beijing 29 (2007) 73–76.

    Google Scholar 

  32. J. Qin, G.G. Liu, Q.T. Wu, X.L. Zha, Adv. Mater. Res. 415–417 (2011) 472–477.

    Article  Google Scholar 

  33. R. Mao, F. Wang, H. Jin, S.D. Mao, Iron and Steel 55 (2020) 199–205.

    Google Scholar 

  34. H.L. Long, H.Y. Li, P.C. Ma, Z.F. Zhou, H.M. Xie, S.H. Yin, Y.M. Wang, L.B. Zhang, S.W. Li, J. Hazard. Mater. 403 (2021) 123595.

    Article  Google Scholar 

  35. C. Peng, Z.C. Guo, F.L. Zhang, Trans. Nonferrous. Met. Soc. China 21 (2011) 1847–1854.

    Article  Google Scholar 

  36. H.H. Tang, W. Sun, H.S. Han, Trans. Nonferrous. Met. Soc. China 25 (2015) 4192–4200.

    Article  Google Scholar 

  37. G. Zhan, Z.C. Guo, Trans. Nonferrous. Met. Soc. China 23 (2013) 3770–3779.

    Article  Google Scholar 

  38. F. Chang, S. Wu, F. Zhang, H. Lu, K. Du, in: Characterization of Minerals, Metals, and Materials 2015, Springer Cham, 2015, pp. 83–90.

  39. D.C. Zhang, X.W. Zhang, T.Z. Yang, S. Rao, W. Hu, W.F. Liu, L. Chen, Hydrometallurgy 169 (2017) 219–228.

    Article  Google Scholar 

  40. A.Y. Ma, L.B. Zhang, J.H. Peng, X.M. Zheng, S.W. Li, K. Yang, W.H. Chen, Green Process. Synth. 5 (2016) 23–30.

    Article  Google Scholar 

  41. X.G. Luo, C. Wei, X.B. Li, Z.G. Deng, M.T. Li, G. Fan, Hydrometallurgy 197 (2020) 105458.

    Article  Google Scholar 

  42. R.O. Díaz, in: Blast furnace dust and phosphorous slag, new materials for use in road engineering, Journal of Physics: Conference Series, IOP Publishing, Bristol, England, 2017, pp. 1–4.

  43. J.X. Wang, Z. Wang, Z.Z. Zhang, G.Q. Zhang, J. Clean. Prod. 209 (2019) 1–9.

    Article  Google Scholar 

  44. J. Vereš, Š. Jakabský, M. Lovás, S. Hredzák, Acta Montan Slovaca 15 (2010) 204–211.

    Google Scholar 

  45. H.T. Makkonen, A. Kekki, E.P. Heikkinen, T. Fabritius, J. Aromaa, O. Forsen, Steel Res. Int. 87 (2016) 1247–1255.

  46. L. Nedar, Steel Res. Int. 67 (1996) 320–327.

    Article  Google Scholar 

  47. S. Teimouri, J.H. Potgieter, M. Lundström, C. Billing, B.P. Wilson, Material 15 (2022) 8648.

    Article  Google Scholar 

  48. A.J.B. Dutra, P.R.P. Paiva, L.M. Tavares, Miner. Eng. 19 (2006) 478–485.

    Article  Google Scholar 

  49. V.P. Korneev, V.P. Sirotinkin, N.V. Petrakova, V.G. Dyubanov, L.I. Leont’ev, Russ. Metall. 7 (2013) 507–512.

    Article  Google Scholar 

  50. D.C. Zhang, R.L. Liu, H. Wang, W.F. Liu, T.Z. Yang, L. Chen, J. Cent. South Univ. 28 (2021) 2701–2710.

    Article  Google Scholar 

  51. S.L. Ren, X.P. Liang, Z.B. Tu, Q. Tang, X.G. Yang, Y. Wang, in: G. Azimi, T. Ouchi, H. Kim, N.R. Neelameggham, S. Alam, A.A. Baba (Eds.), Rare Metal Technology 2019, Springer, Cham, 2019, pp. 89–98.

  52. S. Liang, X. Liang, Q. Tang, Processes 396 (2020) 1–17.

    Google Scholar 

  53. B.A. Zeydabadi, D. Mowla, M.H. Shariat, J.F. Kalajahi, Hydrometallurgy 47 (1997) 113–125.

    Article  Google Scholar 

  54. C.A. Pickles. Miner. Process. Extr. Metall. 112 (2003) 81–89.

    Article  Google Scholar 

  55. G.J. Wong, X.H. Fan, M. Gan, Z.Y. Jia, H.D. Ye, Z.A. Zhou, Z.C. Wang, J. Clean. Prod. 263 (2020) 121400.

    Article  Google Scholar 

  56. Z. Sobol, R.H. Schiestl, Environ. Mol. Mutagen. 53 (2012) 94–100.

    Article  Google Scholar 

  57. T. Takamatsu, M. Watanabe, M.K. Koshikawa, T. Murata, S. Yamamura, S. Hayashi, Sci. Total. Environ. 408 (2010) 1932–1942.

    Article  Google Scholar 

  58. B. Yan, X. Zhang, IOP Conference Series: Earth and Environmental Science 769 (2021) 022034.

    Article  Google Scholar 

  59. M. Omran, T. Fabritius, E.P. Heikkinen, J. Sustain. Metall. 5 (2019) 331–340.

    Article  Google Scholar 

  60. Y.L. Wu, Z.Y. Jiang, X.X. Zhang, Q.G. Xue, Z. Miao, Z.Y. Zhou, Y.S. Shen, Powder Technol. 326 (2018) 101–113.

    Article  Google Scholar 

  61. S.M. Meng, Study on sintering dust characteristics and discharge and subsequent development of electrostatic precipitator platform, Huazhong University of Science and Technology, Wuhan, China, 2013.

    Google Scholar 

  62. D. Zhao, J.L. Zhang, G.W. Wang, A.N. Conejo, R.S. Xu, H.Y. Wang, J.B. Zhong, Appl. Therm. Eng. 108 (2016) 1168–1177.

    Article  Google Scholar 

  63. H.L. Han, D.P. Duan, P. Yuan, ISIJ Int. 54 (2014) 1781–1789.

    Article  Google Scholar 

  64. H.Y. Li, T. Zhang, J.H. Teng, B.J. Wang, H.D. Wu, Energy for Metallurgical Industry 35 (2016) 60–64.

    Google Scholar 

  65. S. Tahir, R.M. Alenka, C.S. Štefica, N.R. Vjera, J. Monika, J. Hazard. Mater. 109 (2004) 59–70.

    Article  Google Scholar 

  66. S.L. Ren, Process research on extracting valuable elements from secondary dust of RHF, Chongqing University, Chongqing, China, 2019.

    Google Scholar 

  67. G. Zhan, Z.C. Guo, J. Environ. Sci. 25 (2013) 1226–1234.

    Article  Google Scholar 

  68. A. Loaiza, H.A. Colorado, Constr. Build. Mater. 166 (2018) 769–778.

    Article  Google Scholar 

  69. X. He, S.F. Xie, X.F. Li, X.D. Lv, R. Huang, JOM 74 (2022) 3039–3048.

    Article  Google Scholar 

  70. J.G.M.S. Machadoa, F.A. Brehmb, C.A.M. Moraesb, C.A.D. Santosc, A.C.F. Vilela, Materials Research 9 (2006) 41–45.

    Article  Google Scholar 

  71. D.Q. Zhu, D.Z. Wang, J. Pan, H.Y. Tian, Y.X. Xue, Powder Technol. 380 (2021) 273–281.

    Article  Google Scholar 

  72. Z.X. Wang, Y. He, W.A. Wang, Y.K. Yang, G.X. Qiu, X.M. Li, Metals 12 (2022) 1364.

    Article  Google Scholar 

  73. P.C. Hung, K.H. Chi, M.L. Chen, M.B. Chang, J. Hazard. Mater. 201–202 (2012) 229–235.

    Article  Google Scholar 

  74. B.R.M. Bisulandu, F. Huchet, Appl. Therm. Eng. 219 (2022) 119637.

    Google Scholar 

  75. M.H. Morcali, O. Yucel, A. Aydin, B. Derin, J. Min. Metall. B 48 (2012) 173–184.

    Article  Google Scholar 

  76. N.V. Nemchinova, V.E. Chernykh, A.A. Tyutrin, A.E. Patrushov, Steel in Translation 46 (2016) 368–372.

    Article  Google Scholar 

  77. S.A. Yakornova, A.M. Pan’shina, P.I. Grudinskyb, V.G. Dyubanovb, L.I. Leont’evb, P.A. Kozlova, D.A. Ivakinc, Russ. J. Non-Ferr. Met. 58 (2017) 586–590.

    Google Scholar 

  78. J. Antrekowitsch, G. Rösler, S. Steinacker, Chem. Ing. Tech. 7 (2015) 1498–1503.

    Article  Google Scholar 

  79. Y.Y. Zhang, Y.H. Qi, Z.S. Zou, Y.G. Li, Adv. Mater. Res. 746 (2013) 533–538.

    Article  Google Scholar 

  80. H. Oda, Y. Abe, T. Ibaraki, Nippon Steel Tech. Rep. 94 (2006) 147–152.

    Google Scholar 

  81. B. Kumar, S. Mishra, G.G. Roy, P.K. Sen, Steel Res. Int. 87 (2016) 1–15.

    Article  Google Scholar 

  82. Y. Liu, F.Y. Su, Z. Wen, Z. Li, H.Q. Yong, X.H. Feng, Metall. Mater. Trans. B 45 (2014) 251–261.

    Article  Google Scholar 

  83. S. Saleem, G.G. Roy, Ironmak. Steelmak. 48 (2021) 229–241.

    Article  Google Scholar 

  84. H. Ishikawa, J. Kopfle, J. Mcclelland, J. Ripke, Arch. Metall. Mater. 53 (2008) 541–545.

    Google Scholar 

  85. R.C. Borah, P. Ghosh, P.G. Rao, Int. J. Energy Res. 35 (2011) 929–963.

    Article  Google Scholar 

  86. Y.B. Kim, Y.R. Gwak, S.I. Keel, J.H. Yun, S.H. Lee, Chem. Eng. J. 377 (2019) 119650.

    Article  Google Scholar 

  87. Z.D. Tang, P. Gao, Y.S. Sun, Y.X. Han, E. Li, J. Chen, Y.H. Zhang, Powder Technol. 360 (2020) 649–657.

    Article  Google Scholar 

  88. T. Wang, H. Zhang, H. Yang, J.F. Lv, Chem. Eng. 153 (2020) 107944.

    Google Scholar 

  89. M.K. Wisyaldin, P.Y. Akshinta, A. Barkati, H. Pariaman, M. Hisjam, Mater. Sci. Eng. 96 (2020) 1–9.

    Google Scholar 

  90. S. Altarawneh, M. Al-harahsheh, A. Buttress, C. Dodds, J. Rodriguez, S. Kingman, J. Ind. Eng. Chem. 104 (2021) 521–528.

    Article  Google Scholar 

  91. E. Kim, T. Kim, J. Lee, Y. Kang, K. Morita, Ironmak. Steelmak. 39 (2012) 45–50.

    Article  Google Scholar 

  92. Q. Ye, Z.W. Peng, G.H. Li, J. Lee, Y. Liu, M.D. Liu, L.C. Wang, M.J. Rao, Y.B. Zhang, T. Jiang, ACS Sustain. Chem. Eng. 7 (2019) 9515–9524.

    Google Scholar 

  93. J. Sun, W. Wang, Q. Yue, Materials 9 (2016) 231.

    Article  Google Scholar 

  94. Q. Ye, G.H. Li, Z.W. Peng, J. Lee, X.L. Lin, M.J. Rao, Y.B. Zhang, T. Jiang, Powder Technol. 342 (2019) 224–232.

    Article  Google Scholar 

  95. K.E. Haque, Int. J. Miner. Process. 57 (1999) 1–24.

    Article  Google Scholar 

  96. T.E. Best, C.A. Pickles, Can. Metall. Quart. 40 (2013) 61–78.

    Article  Google Scholar 

  97. Q. Reynolds, J. South. Afr. Inst. Min. Metall. 115 (2015) 395–407.

    Article  Google Scholar 

  98. S.S. Zheng, T.A. Engh, M. Tangstad, X.T. Luo, Metall. Mater. Trans. A 42 (2011) 2214–2225.

    Article  Google Scholar 

  99. L. Zhan, Z. Xu, Environ. Sci. Technol. 48 (2014) 14092–14102.

    Article  Google Scholar 

  100. Y.G. Zhang, R. Huang, J.P. Yang, B. Li, A.X. Xu, China Metallurgy 32 (2022) 134–141.

    Google Scholar 

  101. X. He, R. Huang, B. Li, Y.G. Zhang, A.X. Xu, Journal of Guizhou University (Natural Sciences) 39 (2022) 119–124.

    Google Scholar 

  102. S.J. Li, P. Lie, Y.Z. Gu, Y.F. Xiao, R.X. Liu, R. Huang, Modern Transportation and Metallurgical 2 (2022) 54–59.

    Google Scholar 

  103. T.V. Rashev, L.T. Zhekova, P.V. Bogev, Steel Transl. 47 (2017) 26–31.

    Article  Google Scholar 

  104. W. Ji, K. Xie, S. Yan, J. Environ. Manage. 294 (2021) 60–66.

    Article  Google Scholar 

  105. J.S. Wang, Y. Li, H.X. Fang, G.Q. Xue, X.F. Yu, G. Wang, H.P. Zuo, Chin. J. Eng. 43 (2021) 1737–1749.

    Google Scholar 

  106. C. Liu, Y.Z. Zhang, F. Wang, M.X. Xu, H.W. Xing, Y. Kang, China Metallurgy 32 (2022) 38–44.

    Google Scholar 

  107. X.J. Hu, T. Guo, G.Z. Guo, J. Iron Steel Res. 23 (2011) 1–5+9.

    Google Scholar 

  108. R.A. Shawabkeh, Hydrometallurgy 104 (2010) 61–65.

    Article  Google Scholar 

  109. Š. Langová, J. Leško, D. Matýsek, Hydrometallurgy 95 (2009) 179–182.

    Article  Google Scholar 

  110. R. Nadirov, G. Karamyrzayev, Min. Metall. Explor. 39 (2022) 1743–1751.

    Google Scholar 

  111. A. Stefanova, J. Aromaa, O. Forsen, Physicochem. Probl. Miner. Process. 51 (2015) 293–302.

    Google Scholar 

  112. M. Laubertova, T. Havlik, L. Parilak, B. Derin, J. Trpcevska, Arch. Metall. Mater. 65 (2020) 321–328.

    Google Scholar 

  113. N. Leclerc, E. Meux, J.M. Lecuire, J. Hazard. Mater. 91 (2002) 257–270.

    Article  Google Scholar 

  114. J.X. Wang, Z. Wang, Z.Z. Zhang, G.Q. Zhang, Metall. Mater. Trans. B 50 (2019) 480–490.

    Article  Google Scholar 

  115. O.R.C. Clemente, M. Alonso, F.J. Alguacil, J. Hazard. Mater. 141 (2007) 33–36.

    Article  Google Scholar 

  116. A.Y. Ma, X.M. Zheng, S. Li, Y.H. Wang, S. Zhu, R. Soc. Open Sci. 5 (2018) 180660.

    Google Scholar 

  117. K. Gargul, B. Boryczko, Arch. Civ. Mech. Eng. 15 (2015) 179–187.

    Article  Google Scholar 

  118. Y. Toporkova, S. Mamyachenkov, O. Anisimova, D. Prodanova, in: Proc. Metal 2019: 28th Int. Conference on Metallurgy and Materials, Brno, The Czech Republic, 2019, pp. 1387–1392.

  119. N.R. Rodriguez, L. Gijsemans, J. Bussé, J. Roosen, M.A.R. Önal, V.M. Torres, Á.M. Fernández, P.T. Jones, K. Binnemans, J. Sustain. Metall. 6 (2020) 680–690.

    Article  Google Scholar 

  120. C.F. Romchat, M. Katsuya, M. Takahiro, N. Tetsuya, Hydrometallurgy 159 (2016) 120–125.

    Article  Google Scholar 

  121. Z.Q. Xie, Y.F. Guo, T. Jiang, F. Chen, in: 8th International Symposium on High-Temperature Metallurgical Processing, Springer, 2017, pp. 485–493.

  122. P. Halli, J. Hamuyuni, M. Leikola, M. Lundström, Miner. Eng. 124 (2018) 1–9.

    Article  Google Scholar 

  123. C. Wang, Y.F. Guo, S. Wang, F. Chen, Y.J. Tan, F.Q. Zheng, L.Z. Yang, Int. J. Miner. Metall. Mater. 27 (2020) 26–36.

    Article  Google Scholar 

  124. H.S. Lee, Y.Y. Teo, IOP Conf. Ser. Earth Environ. 945 (2021) 012027.

    Google Scholar 

  125. F.G. Lei, M.T. Li, C. Wei, Z.G. Deng, X.B. Li, G. Fan, J. Min. Metall. Sect. B 58 (2022) 85–96.

    Article  Google Scholar 

  126. X. Deng, R. Huang, X.D. Lv, J.P. Yang, J. Yang, Process Saf. Environ. Prot. 162 (2022) 746–751.

    Article  Google Scholar 

  127. S.B. Ma, Z.H. Zhang, X.D. Xing, S.X. Xu, X.T. Li, Minerals 12 (2022) 1–13.

    Article  Google Scholar 

  128. M. Leuchtenmueller, C. Legerer, U. Brandner, J. Antrekowitsch, Metall. Mater. Trans. 52 (2021) 548–557.

    Article  Google Scholar 

  129. K. Gargul, P. Jarosz, S. Małecki, Arch. Metall. Mater. 61 (2016) 43–50.

    Article  Google Scholar 

  130. P.E. Prasetyo, C. Anderson, F. Nurjaman, M.A. Muttaqii, A.S. Handoko, F. Bahfie, F.R. Mufakhir, Metals 10 (2020) 1–14.

    Google Scholar 

  131. Z.Y. Ding, Q.Y. Chen, Z.L. Yin, K. Liu, Trans. Nonferrous Met. Soc. China 23 (2013) 832–840.

    Article  Google Scholar 

  132. T. Jiang, F.Y. Meng, W. Gao, Y. Zeng, H.H. Su, Q. Li, B. Xu, Y.B. Yang, Q. Zhong, J. Cent. South Univ. 28 (2021) 2711–2723.

    Article  Google Scholar 

  133. M. Zoraga, S. Ilhan, A.O. Kalpakli, Int. J. Chem. Kinet. 52 (2020) 933–942.

    Article  Google Scholar 

  134. H. Li, Y. Wang, D. Cang, J. Cent. South Univ. Technol. 17 (2010) 967–971.

    Article  Google Scholar 

  135. T. Havlik, G. Maruskinova, A. Miskufova, Arch. Metall. Mater. 63 (2018) 653–658.

    Google Scholar 

  136. A.Y. Ma, X.M. Zheng, L.B. Zhang, J.H. Peng, Z. Lia, S. Lia, S.W. Li, Sep. Sci. Technol. 53 (2018) 1327–1341.

Download references

Acknowledgements

The authors are especially grateful for financial support from the National Natural Science Foundation of China (Grant No. 52064010), Outstanding Young Scientists and Technologists Program of Guizhou Province, China (Grant No. [2021]5644), the Key Nurturing Projects of Guizhou University (Grant No. [2019]07), and the Natural Science Research Project of Guizhou Provincial Department of Education ([2022]041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Rl., Huang, R., Xu, Ax. et al. Research status and development of extraction process of zinc-bearing dust from ironmaking and steelmaking—a critical review. J. Iron Steel Res. Int. 30, 1303–1323 (2023). https://doi.org/10.1007/s42243-023-01004-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01004-5

Keywords

Navigation