Skip to main content
Log in

Zinc Removal from Basic Oxygen Steelmaking Filter Cake by Leaching with Organic Acids

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dust generated from the basic oxygen steelmaking (BOS) process is a waste material mainly containing iron that cannot be recycled owing to its high zinc content. In this study, the leaching effects of different organic acids are compared, with the aim of determining an acid that selectively leaches and removes zinc from BOS dust, so that the waste material can be recycled into ironmaking and steelmaking processes in order to substitute part of the raw materials of steelmaking. The dust used in this study was scrubbed and collected in the form of a filter cake. The acids tested were oxalic, citric, acetic, propionic, butyric, and valeric acids. Butyric acid was found to be the most effective, with a high zinc extraction level of 49.7 pct and a low iron level of only 2.5 pct. Oxalic acid was the least effective leaching reagent for both zinc and iron extractions, owing to the formation of zinc and iron oxalate precipitates following metal dissolution. The filter cake and leached residues were characterized by chemical analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy with energy dispersive spectroscpopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1. S. Kelebek, S. Yörük, and B. Davis: Miner. Eng., 2004, vol. 17, pp. 285-91.

    Article  Google Scholar 

  2. 2. J. Vereš, Š. Jakabský, and M. Lovás: Miner. Slovaca, 2010, vol. 42, pp. 369-74.

    Google Scholar 

  3. 3. Z. Wang, D. Pinson, S. Chew, B. J. Monaghan, H. Rogers, and G. Zhang: ISIJ Int., 2016, vol. 56, pp. 505-12.

    Article  Google Scholar 

  4. 4. M.L. Sammut, J. Rose, A. Masion, E. Fiani, M. Depoux, A. Ziebel, J.L. Hazemann, O. Proux, D. Borschneck, and Y. Noack: Chemosphere, 2008, vol. 70, pp. 1945-51.

    Article  Google Scholar 

  5. 5. P. Dvorak and J. Jandova: Waste Forum, 2002, vol. 6, pp. 22-24.

    Google Scholar 

  6. 6. Z.H. Trung, F. Kukurugya, Z. Takacova, D. Orac, M. Laubertova, A. Miskufova, and T. Havlik: J. Hazard. Mater., 2011, vol. 192, pp. 1100-07.

    Article  Google Scholar 

  7. 7. L.M. Wu: Ironmaking Steelmaking, 1999, vol. 26, pp. 372-77.

    Article  Google Scholar 

  8. 8. K. Gargul and B. Boryczko: Arch. Civil Mech. Eng., 2015, vol. 15, pp. 179-87.

    Article  Google Scholar 

  9. 9. J. Steer, C. Grainger, A. Griffiths, M. Griffiths, T. Heinrich, and A. Hopkins: Ironmaking Steelmaking, 2014, vol. 41, pp. 61-66.

    Article  Google Scholar 

  10. 10. S.M. Smith, X. Zhou, and C.L. Nassaralla: Iron Steelmaker, 2000, vol. 27, pp. 69-76.

    Article  Google Scholar 

  11. 11. L. Wang, X. Lu, X. Wei, Z. Jiang, S. Gu, Q. Gao, and Y. Huang: J. Anal. At. Spectrom., 2012, vol. 27, pp. 1667-73.

    Article  Google Scholar 

  12. 12. V. Montenegro, P. Oustadakis, P.E. Tsakiridis, and S. Agatzini-Leonardou: Metall. Mater. Trans. B, 2013, vol. 44, pp. 1058-69.

    Article  Google Scholar 

  13. 13. H. Shalchian, A. Rafsanjani-Abbasi, J. Vahdati-Khaki, and A. Babakhani: Metall. Mater. Trans. B, 2014, vol. 46, pp. 38-47.

    Google Scholar 

  14. JM Steer and AJ Griffiths: Hydrometallurgy, 2013, vol. 140, pp. 34-41.

    Article  Google Scholar 

  15. 15. F. Anjum, H.N. Bhatti, M.A. Ghauri, I.A. Bhatti, M. Asgher, and M.R. Asi: Afr. J. Biotechnol., 2009, vol. 8, pp. 5038-45.

    Google Scholar 

  16. 16. H.Y. Wu and Y.P. Ting: Enzyme Microb. Technol., 2006, vol. 38, pp. 839-47.

    Article  Google Scholar 

  17. 17. S. Nagib and K. Inoue: Hydrometallurgy, 2000, vol. 56, pp. 269-92.

    Article  Google Scholar 

  18. 18. J. Han, W. Liu, W. Qin, Y. Zheng, and H. Luo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 686-93.

    Article  Google Scholar 

  19. 19. T. Miki, R. Chairaksa-Fujimoto, K. Maruyama, and T. Nagasaka: J. Hazard. Mater., 2016, vol. 302, pp. 90-96.

    Article  Google Scholar 

  20. 20. A.A. Tahir and K.U. Wijayantha: J. Photochem. Photobio. A: Chem., 2010, vol. 216, pp. 119-25.

    Article  Google Scholar 

  21. 21. F. Pan, Y. Guo, F. Cheng, T. Fa, and S. Yao: Chin. Phys. B., 2011, vol. 20, pp. 127501.

    Article  Google Scholar 

  22. 22. M. Li, B. Peng, L. Chai, N. Peng, X. Xie, and H. Yan: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 1480-88.

    Article  Google Scholar 

  23. 23. R. Dom, A.S. Chary, R. Subasri, N.Y. Hebalkar, and P.H. Borse: Int. J. Energy Res., 2015, vol. 39, pp. 1378-90.

    Article  Google Scholar 

  24. D.D. Perrin, B. Dempsey, and E.P. Serjeant: pKa Prediction for Organic Acids and Bases, 1st ed., Chapman & Hall, New York, 1981.

  25. 25. X.S. Jing, F.Q. Liu, X. Yang, P.P. Ling, L.J. Li, C. Long, and A.M. Li: J. Hazard. Mater., 2009, vol. 167, pp. 589-96.

    Article  Google Scholar 

  26. 26. S.O. Lee, T. Tran, Y.Y. Park, S.J. Kim, and M.J. Kim: Int. J. Miner. Process., 2006, vol. 80, pp. 144-52.

    Article  Google Scholar 

  27. 27. D. Panias, M. Taxiarchou, I. Paspaliaris, and A. Kontopoulos: Hydrometallurgy, 1996, vol. 42, pp. 257-65.

    Article  Google Scholar 

  28. 28. I. De Michelis, F. Ferella, E. Karakaya, F. Beolchini, and F. Veglio: J. Power Sources, 2007, vol. 172, pp. 975-83.

    Article  Google Scholar 

  29. 29. M. Irannajad, M. Meshkini, and A.R. Azadmehr: Physicochem. Probl. Min. Process., 2013, vol. 49, pp. 547-55.

    Google Scholar 

  30. 30. M.D. Del and S. Babel: Water Sci. Technol., 2006, vol. 54, pp. 129-35.

    Google Scholar 

  31. 31. Š. Langová and D. Matýsek: Hydrometallurgy, 2010, vol. 101, pp. 171-73.

    Article  Google Scholar 

  32. 32. T. Havlik, B. Friedrich, and S. Stopić: Erzmetall, 2004, vol. 57, pp. 113-20.

    Google Scholar 

  33. 33. J. Vereš, Š. Jakabský, and M. Lovás: Acta Montanistica Slovaca, 2011, vol. 16, pp. 185-91.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the awarding of the CSC scholarship by the China Scholarships Council and the IPTA scholarship by the University of Wollongong to Miss Jingxiu Wang. The BOS filter cake sample used in this work was supplied by BlueScope Steelmaking Ltd. The authors would like to thank Dr. Linda Tie and Dr. Dongqi Shi for their assistance in the ICP-OES and XPS analyses. The SEM/EDS and XPS analyses were completed at the Electron Microscopy Centre, University of Wollongong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxiu Wang.

Additional information

This study has patent pending for the technique employed.

Manuscript submitted August 2, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Z., Zhang, Z. et al. Zinc Removal from Basic Oxygen Steelmaking Filter Cake by Leaching with Organic Acids. Metall Mater Trans B 50, 480–490 (2019). https://doi.org/10.1007/s11663-018-1440-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1440-3

Keywords

Navigation