Skip to main content
Log in

CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard kε turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Constant in the eddy-dissipation model

a :

Absorption coefficient for gas medium

B :

Constant in the eddy-dissipation model

C 1ɛ :

Constant in standard kɛ model

C 2ɛ :

Constant in standard kɛ model

C 3ɛ :

Constant in standard kɛ model

C μ :

Constant in standard kɛ model

c P :

Specific heat at constant pressure, J kg−1 K−1

D i,m :

Diffusion coefficient for species i in the mixture, m2 s−1

E :

Total energy per unit mass, J kg−1

g j :

Component of the gravitational vector in the jth direction, m s−2

G b :

Production of turbulent kinetic energy by buoyancy, J m−3 s−1

G k :

Production of turbulent kinetic energy by velocity gradient, J m−3 s−1

I :

Radiation intensity, W m−2 sr−1

I b :

Blackbody radiation intensity, W m−2

I bw :

Black body radiation at furnace temperature, W m−2

I in :

Intensity of the incoming ray, W m−2 sr−1

M :

Molecular weight, kg mol−1

\( \overrightarrow {n} \) :

Outward normal vector

p :

Pressure, Pa

Pr t :

Turbulent Prandtl number

q R :

Radiative heat transfer rate, W m−2

\( \overrightarrow {r} \) :

Position vector, m

R i :

Volumetric rate of creation of species i, mol m−3 s−1

\( \overrightarrow {s} \) :

Unit direction vector, m

Sc t :

Turbulent Schmidt number

T :

Temperature, K

u i :

Velocity components, m s−1

Y i :

Mass fraction of species i

Y P :

Mass fraction of any product species

Y R :

Mass fraction of a particular reactant

β :

Coefficient of thermal expansion

δ ij :

Kronecker delta

ɛ :

Dissipation rate of turbulent kinetic energy per unit mass, m2 s−3

ɛ w :

Wall emissivity

κ :

Absorption coefficient, m−1

μ :

Molecular viscosity, kg m−1 s−1

μ eff :

Effective viscosity, kg m−1 s−1

μ t :

Turbulent viscosity, kg m−1 s−1

ν i,r :

Stoichiometric coefficient for reactant i in reaction r

ν i,r :

Stoichiometric coefficient for product i in reaction r

ρ :

Density, kg m−3

σ :

Stefan–Boltzmann constant, 5.67 × 10−8 W m−2 K−4

σ k :

Turbulent Prandtl number for k in standard kɛ model

σ ɛ :

Turbulent Prandtl number for ɛ in standard kɛ model

References

  1. T. Ibaraki, and H. Oda: Revue de Métallurgie, 2002, vol. 99, pp.809-818.

    Article  Google Scholar 

  2. H. Oda, T. Ibaraki, and Y. Abe: Nippon Steel Tech. Rep., 2006, No. 94, pp.147-152.

    Google Scholar 

  3. H. Tsutsumi, S. Yoshida, and M. Tetsumoto: Kobelco Technol. Rev., 2010, vol. 12, pp. 85–92.

    Google Scholar 

  4. Y. Iguchi and Y. Takada: ISIJ Int., 2004, vol. 44, pp. 673-681.

    Article  Google Scholar 

  5. R.J. Fruehan: Metall. Trans. B, 1977, vol. 8B, pp. 279-286.

    Article  Google Scholar 

  6. Y.K. Rao: Metall. Trans., 1971, vol. 2, pp.1439-1447.

    Google Scholar 

  7. E. Donskoi, R.I. Olivares, D.L.S. McElwain and L.J. Wibberley: Ironmak. Steelmak., 2006, vol. 33, pp. 24-28.

    Article  Google Scholar 

  8. H.K. Chen and N.H. Chiu: J. Mater. Sci. Lett., 2002, vol. 21, pp. 1529-1532.

    Article  Google Scholar 

  9. Z.J. Liu, X.D. Xing, J.L. Zhang, M.M. Cao, K.X. Jiao and S. Ren: Int. J. Min. Met. Mater., 2012, vol. 19, pp. 986-991.

    Article  Google Scholar 

  10. C.E. Seaton, J.S. Foster, and J. Velasco: Trans. ISIJ, 1983, vol. 23, pp. 490-496.

    Article  Google Scholar 

  11. O. Fortini, and R. Fruehan: Steel Res. Int., 2004,vol. 75, pp. 625-631.

    Google Scholar 

  12. G.D. Stefanidis, B. Merci, G.J. Heynderickx, and G.B. Marin: Comput. Chem. Eng., 2006, vol. 30, pp. 635-649.

    Article  Google Scholar 

  13. R. Vuthaluru, and H.B. Vuthaluru: Fuel Process. Technol., 2006,vol. 87, pp. 633-639.

    Article  Google Scholar 

  14. J.X. Feng, K.L. Liang, Z.B. Sun, J.H. Xu, Y.M. Zhang, and J.B. Yang: Int. J. Min. Met. Mater., 2011, vol. 18, pp. 285-291.

    Article  Google Scholar 

  15. J.H. Jang, D.E. Lee, M.Y. Kim, and H.G. Kim: Int. J. Heat Mass Tran., 2010, vol. 53, pp. 4326-4332.

    Article  Google Scholar 

  16. S.H. Han, D. Chang, and C.Y. Kim: Int. J. Heat Mass Tran., 2010, vol. 53, pp. 3855-3861.

    Article  Google Scholar 

  17. A.M. Mäki, P.J. Österman, and M.J. Luomala: Scand. J. Metall., 2002, vol. 31, pp. 81-87.

    Article  Google Scholar 

  18. J.G. Kim, K.Y. Huh, and I.T. Kim: Numer. Heat Tr. A-Appl., 2000, vol. 38, pp. 589-609.

    Article  Google Scholar 

  19. Y.L. Wu, Z.Y. Jiang, X.X. Zhang, P. Wang, and X.F. She: Int. J. Min. Met. Mater., 2013, vol. 20, pp. 636-644.

    Article  Google Scholar 

  20. X.W. An, J.S. Wang, X.F. She, and Q.G. Xue: Int. J. Min. Met. Mater., 2013, vol 20, pp. 627-635.

    Article  Google Scholar 

  21. Y.L. Wu: Ph.D. Thesis, University of Science and Technology Beijing, 2012.

  22. FLUENT 6.3 User’s Guide, Fluent Inc., Lebanon, 2006.

  23. FLUENT 6.3 UDF Manual, Fluent Inc., Lebanon, 2006.

  24. GAMBIT 2.3 User’s Guide, Fluent Inc., Lebanon, 2006.

  25. S.H. Han, S.W. Baek, S.H. Kang, and C.Y. Kim: Int. J. Heat Mass Tran., 2007, vol. 50, pp. 2019-2023.

    Article  Google Scholar 

  26. A. Habibi, B. Merci, and G.J. Heynderickx: Comput. Chem. Eng., 2007, vol. 31, pp.1389-1406.

    Article  Google Scholar 

  27. B.F. Magnussen and B.H. Hjertager: 16th Symp. Combust., 1977.

  28. D.B. Spalding: Symp. (Int.) Combust., 1971.

  29. Y. Liu, F.Y. Su, Z. Wen, Z. Li, H.Q. Yong, and X.H. Feng: Int. J. Heat Mass Tran., 2013, vol. 20, pp. 1042-1049.

    Google Scholar 

Download references

Acknowledgments

The article was supported by the Fundamental Research Funds for the Central Universities (No. FRF-SD-12-007B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Yong Su.

Additional information

Manuscript submitted July 17, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Su, FY., Wen, Z. et al. CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace. Metall Mater Trans B 45, 251–261 (2014). https://doi.org/10.1007/s11663-013-0021-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-013-0021-8

Keywords

Navigation