Skip to main content
Log in

Influence of mechanical reduction amount on internal quality of continuous casting billets by thermal and numerical simulation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

With establishment of thermal and numerical simulation models, the influence of reduction amount on solidification structure, segregation and shrinkage porosity of continuous casting (CC) billets was investigated. The thermal–mechanical coupled simulation results indicated that with an increase in reduction amount, the temperature in the central area decreases, and the reduction efficiency firstly increases and then decreases, reaching the maximum value at reduction amount of 6 mm. Metallographic analysis showed that increasing the reduction amount is beneficial for the refinement of central solidification structure. Moreover, the internal cracks are more likely to appear at higher reduction efficiency. The X-ray computerized tomography results revealed that a higher reduction amount can significantly reduce the volume fraction and equivalent diameter of the central shrinkage porosities of CC billets and increase the sphericity of them. Simultaneously, the macrosegregation of carbon along the central line is improved as the reduction amount increases; while the reduction amount exceeds 8 mm, the segregation degree will not change any more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. B.G. Thomas, Steel Res. Int. 89 (2018) 1700312.

    Article  Google Scholar 

  2. S.M. Cho, B.G. Thomas, Metals 9 (2019) 471.

    Article  Google Scholar 

  3. W. Wang, Z.B. Hou, Y. Chang, J.H. Cao, J. Iron Steel Res. Int. 25 (2018) 9–18.

    Article  Google Scholar 

  4. M.C. Flemings, ISIJ Int. 40 (2000) 833–841.

    Article  Google Scholar 

  5. A. Scholes, Ironmak. Steelmak. 32 (2005) 101–108.

    Article  Google Scholar 

  6. S.K. Choudhary, S. Ganguly, ISIJ Int. 47 (2007) 1759–1766.

    Article  Google Scholar 

  7. S.K. Choudhary, S. Ganguly, A. Sengupta, V. Sharma, J. Mater. Process. Technol. 243 (2017) 312–321.

    Article  Google Scholar 

  8. S. Luo, F.Y. Piao, D.B. Jiang, W.L. Wang, M.Y. Zhu, J. Iron Steel Res. Int. 21 (2014) 51–55.

    Article  Google Scholar 

  9. T. Koshikawa, M. Bellet, C.A. Gandin, H. Yamamura, M. Bobadilla, Metall. Mater. Trans. A 47 (2016) 4053–4067.

    Article  Google Scholar 

  10. T. Koshikawa, M. Bellet, C.A. Gandin, H. Yamamura, M. Bobadilla, Acta Mater. 124 (2017) 513–527.

    Article  Google Scholar 

  11. R. Cheng, J. Zhang, L. Zhang, H. Ma, J. Mater. Process. Technol. 266 (2019) 96–104.

    Article  Google Scholar 

  12. Y.S. Han, W. Yan, J.S. Zhang, J. Chen, W.Q. Chen, Q. Liu, J. Iron Steel Res. Int. 28 (2021) 160–167.

    Article  Google Scholar 

  13. H. An, Y. Bao, M. Wang, Q. Yang, Y. Dang, Ironmak. Steelmak. 47 (2020) 1063–1077.

    Article  Google Scholar 

  14. B. Rogberg, L. Ek, ISIJ Int. 58 (2018) 478–487.

    Article  Google Scholar 

  15. C. Wu, C. Ji, M. Zhu, J. Mater. Process. Technol. 271 (2019) 651–659.

    Article  Google Scholar 

  16. J. Domitner, M. Wu, A. Kharicha, A. Ludwig, B. Kaufmann, J. Reiter, T. Schaden, Metall. Mater. Trans. A 45 (2014) 1415–1434.

    Article  Google Scholar 

  17. C. Ji, S. Luo, M. Zhu, ISIJ Int. 54 (2014) 504–510.

    Article  Google Scholar 

  18. G. Li, W. Yu, Q. Cai, J. Mater. Process. Technol. 227 (2016) 41–48.

    Article  Google Scholar 

  19. R. Thome, K. Harste, ISIJ Int. 46 (2006) 1839–1844.

    Article  Google Scholar 

  20. Q. Dong, J. Zhang, B. Wang, X. Zhao, J. Mater. Process. Technol. 238 (2016) 81–88.

    Article  Google Scholar 

  21. C. Wu, C. Ji, M. Zhu, Metals 9 (2019) 128.

    Article  Google Scholar 

  22. Z. Xu, X. Wang, M. Jiang, Steel Res. Int. 87 (2016) 1600061.

    Google Scholar 

  23. Q. Tian, G. Wang, Y. Zhao, J. Li, Q. Wang, Metall. Mater. Trans. B 49 (2018) 1149–1164.

    Article  Google Scholar 

  24. D.Q. Jiang, R. Wang, Q. Zhang, Z.Q. Zhang, T.S. Tu, J. Wang, Z.M. Ren, J. Iron Steel Res. Int. 27 (2020) 141–147.

    Article  Google Scholar 

  25. P. Lyu, W. Wang, H. Zhang, Metall. Mater. Trans. B 48 (2017) 247–259.

    Article  Google Scholar 

  26. A.P. Boeira, I.L. Ferreira, A. Garcia, Mater. Sci. Eng. A 435–436 (2006) 150–157.

    Article  Google Scholar 

  27. A.P. Boeira, I.L. Ferreira, A. Garcia, Mater. Des. 30 (2009) 2090–2098.

    Article  Google Scholar 

  28. E.N. de Souza, N. Cheung, C.A. Santos, A. Garcia, Mater. Sci. Eng. A 397 (2005) 239–248.

    Article  Google Scholar 

  29. F. Bertelli, C. Brito, E.S. Meza, N. Cheung, A. Garcia, Mater. Chem. Phys. 136 (2012) 545–554.

    Article  Google Scholar 

  30. F. Bertelli, J.D. Faria, P.R. Goulart, C. Brito, N. Cheung, A. Garcia, Appl. Therm. Eng. 96 (2016) 454–462.

    Article  Google Scholar 

  31. Z. Hu, X. Lei, L. Zhang, W. Yang, Y. Zhang, Y. Gao, Metall. Mater. Trans. B 53 (2022) 1603–1616.

    Article  Google Scholar 

  32. N. Ali, L. Zhang, H. Zhou, A. Zhao, C. Zhang, Y. Gao, Mater. Des. 209 (2021) 109978.

    Article  Google Scholar 

  33. Z. Li, Y. Jing, H. Guo, X. Sun, K. Yu, A. Yu, X. Jiang, X.J. Yang, Metall. Mater. Trans. B 50 (2019) 1204–1212.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 52127807 and 52271035), National Science and Technology Major Project of China (No. J2019-VI-0023) and the fund of the State Key Laboratory of Solidification Processing (Northwestern Polytechnical University) (No. SKLSP202107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan-qing Jiang or Jiang Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Dq., Sun, Sj., Wu, H. et al. Influence of mechanical reduction amount on internal quality of continuous casting billets by thermal and numerical simulation. J. Iron Steel Res. Int. 30, 1234–1243 (2023). https://doi.org/10.1007/s42243-023-00971-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-00971-z

Keywords

Navigation