Skip to main content
Log in

Simulating molten pool features of shipbuilding steel subjected to submerged arc welding

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Submerged arc welding process has been simulated to investigate the molten pool features of EH36 shipbuilding steel. One case only involved the surface tension model, and another one involved both the surface tension model and the interface tension model. The role of interface tension during welding is revealed, and the evolution of molten pool morphology is understood by comparing the surface temperature distribution, surface tension and interface tension distribution, and the streamline of the molten pool for the two cases. When the interface tension model is disregarded, a flow conducive to the outward expansion is formed in the surface area of the molten pool, resulting in a small weld depth-to-width ratio. After applying the interface tension model, the expanding outward flow is restrained, which leads to a deep penetration morphology with a large weld depth-to-width ratio due to the inward flow governed by the Marangoni forces. The simulation results involving the interface tension model have been verified with satisfactory predictability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.W. Cho, W.H. Song, M.H. Cho, S.J. Na, J. Mater. Process. Technol. 213 (2013) 2278–2291.

    Article  Google Scholar 

  2. D.W. Cho, D.V. Kiran, S.J. Na, Int. J. Heat Mass Transf. 110 (2017) 104–112.

    Article  Google Scholar 

  3. C. Wang, J. Zhang, Acta Metall. Sin. 57 (2021) 1126–1140.

    Google Scholar 

  4. Z. Wang, J. Zhang, M. Zhong, C. Wang, Metall. Mater. Trans. B 53 (2022) 1364–1370.

    Article  Google Scholar 

  5. S. Kou, D.K. Sun, Metall. Trans. A 16 (1985) 203–213.

    Article  Google Scholar 

  6. G.M. Oreper, J. Szekely, J. Fluid Mech. 147 (1984) 53–79.

    Article  Google Scholar 

  7. R. Sudhakaran, V. VeL Murugan, P.S. Sivasakthivel, M. Balaji, Int. J. Adv. Manuf. Technol. 64 (2013) 1487–1504.

    Article  Google Scholar 

  8. A. Abe, J. Mater. Process. Technol. 85 (1999) 162–165.

    Article  Google Scholar 

  9. C. Wang, M. Jiang, C. Wang, H. Liu, D. Zhao, Z. Chen, J. Adv. Joining Process. 1 (2020) 100021.

    Article  Google Scholar 

  10. D.V. Kiran, B. Basu, A.K. Shah, S. Mishra, A. De, ISIJ Int. 51 (2011) 793–798.

    Article  Google Scholar 

  11. A. Ghosh, H. Chattopadhyay, Int. J. Adv. Manuf. Technol. 69 (2013) 2691–2701.

    Article  Google Scholar 

  12. W.H. Kim, H.G. Fan, S.J. Na, Numer. Heat Transf. A 32 (1997) 633–652.

    Article  Google Scholar 

  13. D.W. Cho, D.V. Kiran, W.H. Song, S.J. Na, J. Mater. Process. Technol. 214 (2014) 2233–2247.

    Article  Google Scholar 

  14. H.G. Fan, H.L. Tsai, S.J. Na, Int. J. Heat Mass Transf. 44 (2001) 417–428.

    Article  Google Scholar 

  15. Y. Li, Y. Feng, X. Zhang, C. Wu, Int. J. Therm. Sci. 64 (2013) 93–104.

    Article  Google Scholar 

  16. J.W. Kim, S.J. Na, J. Eng. Ind. 116 (1994) 78–85.

    Article  Google Scholar 

  17. L. Wang, C. Wu, J. Chen, J. Gao, Int. J. Heat Mass Transf. 116 (2018) 1282–1291.

    Article  Google Scholar 

  18. G. Chen, J. Liu, X. Shu, H. Gu, B. Zhang, Int. J. Heat Mass Transf. 138 (2019) 879–888.

    Article  Google Scholar 

  19. I.S. Kim, A. Basu, J. Mater. Process. Technol. 77 (1998) 17–24.

    Article  Google Scholar 

  20. M. Shoichi, M. Yukio, T. Koki, T. Yasushi, M. Yukinori, M. Yusuke, Sci. Technol. Weld. Joining 18 (2013) 38–44.

    Article  Google Scholar 

  21. L. Wang, J. Chen, C. Wu, J. Gao, J. Mater. Process. Technol. 237 (2016) 342–350.

    Article  Google Scholar 

  22. L.E. Scriven, C.V. Sternling, Nature 187 (1960) 186–188.

    Article  Google Scholar 

  23. V.G. Levich, V.S. Krylov, Annual Review of Fluid Mechanics 1 (1969) 293–316.

    Article  Google Scholar 

  24. D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, J. Mater. Process. Technol. 213 (2013) 1640–1652.

    Article  Google Scholar 

  25. D.V. Kiran, D.W. Cho, W.H. Song, S.J. Na, Int. J. Heat Mass Transf. 87 (2015) 327–340.

    Article  Google Scholar 

  26. B. Zhao, J. Chen, C. Jia, C. Wu, J. Manuf. Process. 32 (2018) 538–552.

    Article  Google Scholar 

  27. Y. Ogino, S. Fukumoto, S. Asai, T. Tsuyama, Weld. World 64 (2020) 1897–1904.

    Article  Google Scholar 

  28. D. Deng, S. Kiyoshima, Comput. Mater. Sci. 62 (2012) 23–34.

    Article  Google Scholar 

  29. B. Zhao, J. Chen, C. Wu, L. Shi, J. Manuf. Process. 59 (2020) 167–185.

    Article  Google Scholar 

  30. Y.T. Cho, S.J. Na, Meas. Sci. Technol. 16 (2005) 878–884.

    Article  Google Scholar 

  31. S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, Mater. Des. 32 (2011) 869–876.

    Article  Google Scholar 

  32. M. Shome, Mater. Sci. Eng. A 445–446 (2007) 454–460.

    Article  Google Scholar 

  33. X. Meng, G. Qin, Z. Zou, Mater. Des. 94 (2016) 69–78.

    Article  Google Scholar 

  34. X. Meng, G. Qin, X. Bai, Z. Zou, J. Mater. Process. Technol. 236 (2016) 225–234.

    Article  Google Scholar 

  35. M.L. Lin, T.W. Eagar, Metall. Trans. B 17 (1986) 601–607.

    Article  Google Scholar 

  36. J. Zhou, H.L. Tsai, Int. J. Heat Mass Transf. 50 (2007) 2217–2235.

    Article  Google Scholar 

  37. X. Meng, G. Qin, R. Zong, Int. J. Therm. Sci. 134 (2018) 380–391.

    Article  Google Scholar 

  38. S. Kou, Y.H. Wang, Metall. Trans. A 17 (1986) 2271–2277.

    Article  Google Scholar 

  39. P. Sahoo, T. Debroy, M.J. McNallan, Metall. Trans. B 19 (1988) 483–491.

    Article  Google Scholar 

  40. L.A. Girifalco, R.J. Good, J. Phys. Chem. 61 (1957) 904–909.

    Article  Google Scholar 

  41. A.W. Cramb, I. Jimbo, Steel Res. Int. 60 (1989) 157–165.

    Article  Google Scholar 

  42. H. Gaye, L.D. Lucas, M. Olette, P.V. Riboud, Can. Metall. Quart. 23 (1984) 179–191.

    Article  Google Scholar 

  43. S. Kou, Welding metallurgy, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, USA, 2002.

    Book  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the National Natural Science Foundation of China (Grant Nos. U20A20277, 52150610494, 52104295, 52011530180 and 52050410341), Research Fund for Central Universities (Grant Nos. N2125016 and N2025025), and Young Elite Scientists Sponsorship Program by CAST (YESS) (Grant No. 2021-2023QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-jun Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Jiang, L., Bai, Hy. et al. Simulating molten pool features of shipbuilding steel subjected to submerged arc welding. J. Iron Steel Res. Int. 30, 569–579 (2023). https://doi.org/10.1007/s42243-022-00908-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00908-y

Keywords

Navigation