Skip to main content
Log in

On hot deformation behavior and workability characteristic of 42CrMo4 steel based on microstructure and processing map

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to determine the safe region of 42CrMo4 steel during hot working and obtain excellent workability, the hot deformation behavior at the temperatures of 850–1150 °C and the strain rates of 0.01–10 s−1 was investigated through single-pass compression test of thermo-simulation. Through observing and analyzing the true stress–strain curves, the conclusion may be drawn that the flow stress value increases with the decrease in deformation temperature and the increase in strain rate. Raising temperature and reducing strain rate are conductive to dynamic recrystallization (DRX) nucleating and growing, but adiabatic heating caused by higher strain rate can also promote it. Since the Zener–Hollomon (Z) value and dynamic recrystallized grain size (DDRX) have completely opposite trends with deformation condition parameters, the expression of Z value and DDRX can be determined as: \(D_{{{\text{DRX}}}} = 15,567.645Z^{ - 0.2174}\). The processing map and instability map constructed at a strain of 0.9 show that the suitable window for hot working with a true strain of 0.9 is in the temperature range of 970–1150 °C and strain rate range of 0.01–0.25 s−1, as well as at the temperature of 1150 °C and strain rate range of 0.25–10 s−1. The instability phenomenon appears in the process interval of 850–1096 °C and 0.22–10 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Stark, U. Fritsching, M. Hunkel, D. Hansmann, Materialwissenschaft Und Werkstofftechnik 43 (2012) 56–62.

    Article  Google Scholar 

  2. R. Pandiyarajan, K. Arumugam, M.P. Prabakaran, K.V. Kumar, Materialtoday Proceed. 37 (2021) 1957–1962.

    Google Scholar 

  3. H.J. McQueen, C.A.C. Imbert, J. Alloy. Compd. 378 (2004) 35–43.

    Article  Google Scholar 

  4. R. Kaspar, J.S. Distl, O. Pawelski, Steel Res. 59 (1988) 421–425.

    Article  Google Scholar 

  5. C. Wu, S. Han, Acta Metall. (Sin. Engl.) 31 (2018) 963–974.

    Article  Google Scholar 

  6. S.K. Rajput, G.P. Chaudhari, S.K. Nath, J. Mater. Process. Technol. 237 (2016) 113–125.

    Article  Google Scholar 

  7. Y.C. Lin, G. Liu, Comput. Mater. Sci. 48 (2010) 54–58.

    Article  Google Scholar 

  8. M.S. Chen, Y.C. Lin, X.S. Ma, Mater. Sci. Eng. A 556 (2012) 260–266.

    Article  Google Scholar 

  9. Z.W. Zhu, Y.S. Lu, Q.J. Xie, D.Y. Li, N. Gao, Mater. Des. 119 (2017) 171–179.

    Article  Google Scholar 

  10. F.C. Qin, H.P. Qi, C.Y. Liu, H.Q. Qi, Z.B. Meng, Adv. Mater. Sci. Eng. 2021 (2021) 6638505.

    Article  Google Scholar 

  11. H.C. Ji, H.L. Duan, Y.G. Li, W.D. Li, X.M. Huang, W.C. Pei, Y.H. Lu, J. Mater. Res. Technol. 9 (2020) 7210–7224.

    Article  Google Scholar 

  12. A. Belyakov, H. Miura, T. Sakai, Mater. Sci. Eng. A 255 (1998) 139–147.

    Article  Google Scholar 

  13. E. Brünger, X. Wang, G. Gottstein, Scripta Mater. 38 (1998) 1843–1849.

    Article  Google Scholar 

  14. B. Derby, M.F. Ashby, Scripta Metall. 21 (1987) 879–884.

    Article  Google Scholar 

  15. S.L. Wang, M.X. Zhang, H.C. Wu, B. Yang, Mater. Charact. 118 (2016) 92–101.

    Article  Google Scholar 

  16. G.Z. Quan, G.S. Li, T. Chen, Y.X. Wang, Y.W. Zhang, J. Zhou, Mater. Sci. Eng. A 528 (2011) 4643–4651.

    Article  Google Scholar 

  17. C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, P.C. Li, Mater. Sci. Eng. A 797 (2020) 139925.

    Article  Google Scholar 

  18. H. Jiang, J.X. Dong, M.C. Zhang, Z.H. Yao, J. Alloy. Compd. 735 (2018) 1520–1535.

    Article  Google Scholar 

  19. Y.G. Yang, W.Z. Mu, X.Q. Li, H.T. Jiang, M. Wang, Z.L. Mi, X.P. Mao, J. Iron Steel Res. Int. 29 (2022) 316–326.

    Article  Google Scholar 

  20. S. Mandal, M. Jayalakshmi, A.K. Bhaduri, V. Subramanya Sarma, Metall. Mater. Trans. A 45 (2014) 5645–5656.

    Article  Google Scholar 

  21. H. Jiang, J.X. Dong, M.C. Zhang, Z.H. Yao, Metall. Mater. Trans. A 47 (2016) 5071–5087.

    Article  Google Scholar 

  22. J.J. Jonas, C.M. Sellars, W.J.M.G. Tegart, Metall. Rev. 14 (1969) 1–24.

    Article  Google Scholar 

  23. W.M. Xiong, R.B. Song, P. Yu, Z.J. Liu, S. Qin, Y.C. Zhang, S.Y. Quan, W.F. Huo, Z.Y. Zhao, S.R. Su, C. Wei, Steel Res. Int. 92 (2021) 2000225.

    Article  Google Scholar 

  24. C. Zener, J.H. Hollomon, J. Appl. Phys. 15 (1944) 22–32.

    Article  Google Scholar 

  25. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883–1892.

    Article  Google Scholar 

  26. S.V.S. Narayana Murty, B. Nageswara Rao, J. Mater. Sci. Letter. 17 (1998) 1203–1205.

    Article  Google Scholar 

  27. Y.P. Wu, X.M. Zhang, Y.L. Deng, C.P. Tang, L. Yang, Y.Y. Zhong, Trans. Nonferrous Metal. Soc. China 25 (2015) 1831–1839.

    Article  Google Scholar 

  28. W.L. Cheng, Y. Bai, S.C. Ma, L.F. Wang, H.X. Wang, H. Yu, J. Mater. Sci. Technol. 35 (2019) 1198–1209.

    Article  Google Scholar 

  29. Y.H. Guo, Y.D. Xuanyuan, X. Ly, S. Yang, Materials 13 (2020) 312.

    Article  Google Scholar 

  30. S. Ramanathan, R. Karthikeyan, M. Gupta, J. Mater. Process. Technol. 183 (2007) 104–110.

    Article  Google Scholar 

  31. A. Chiba, S.H. Lee, H. Matsumoto, M. Nakamura, Mater. Sci. Eng. A 513–514 (2009) 286–293.

    Article  Google Scholar 

  32. A. Hor, F. Morel, J. Lou Lebrun, G. Germain, Int. J. Mech. Sci. 67 (2013) 108–122.

    Article  Google Scholar 

  33. C.M. Li, Y. Liu, Y.B. Tan, F. Zhao, Metals 8 (2018) 846.

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National High-tech R&D Program (863 Program) (2015AA03A501) and the Fundamental Research Funds for the Central Universities (N2107013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-yan Wu or Lin-xiu Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, M., Wu, Hy., Dong, Y. et al. On hot deformation behavior and workability characteristic of 42CrMo4 steel based on microstructure and processing map. J. Iron Steel Res. Int. 30, 537–547 (2023). https://doi.org/10.1007/s42243-022-00857-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00857-6

Keywords

Navigation