Skip to main content
Log in

Plastic Deformation Behavior and Processing Maps of 35CrMo Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Hot deformation behavior of 35CrMo steel was investigated by compression tests in the temperature range of 850 to 1150 °C and strain rate range of 0.01 to 20 s−1 on a Gleeble-3810 thermal simulator. According to processing maps constructed based on the experimental data and using the principle of dynamic materials modeling (DMM), when the strain is 0.8, three safe regions with comparatively high efficiency of power dissipation were identified: (850 to 920) °C/(0.01 to 0.02) s−1, (850 to 900) °C/(10 to 20) s−1, and (1050 to 1150) °C/(0.01 to 1) s−1. And the domain of (920 to 1150) °C/(2.7 to 20) s−1 is within the instability range, whose efficiency of power dissipation is around 0.05. The deformed optical microstructure indicated that the combination of low deformation temperature (850 °C) and a relatively high strain rate (20 s−1) resulted in the smallest dynamic recrystallized grains, but coarser grains were obtained when a much higher strain rate was employed (50 s−1). A lower strain rate or a higher temperature will accelerate the growth of grains, and both high temperature and high strain rate can cause microcracks in the deformed steel. Integration of the processing map into the optical microstructure identified the region of (850 to 900) °C/(10 to 20) s−1 as the ideal condition for the hot deformation of 35CrMo steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Park, A. Shibata, D. Terada, and N. Tsuji, Flow Stress Analysis for Determining the Critical Condition of Dynamic Ferrite Transformation in 6Ni-0.1C Steel, Acta Mater., 2013, 61, p 163–173

    Article  Google Scholar 

  2. I. Mejía, A. Bedolla Jacuinde, C. Maldonado, and J.M. Cabrera, Determination of the Critical Conditions for the Initiation of Dynamic Recrystallization in Boron Microalloyed Steels, Mater. Sci. Eng. A, 2011, 528, p 4133–4140

    Article  Google Scholar 

  3. G.Z. Quan, G.C. Luo, J.T. Liang, D.S. Wu, A. Mao, and Q. Liu, Modelling for the Dynamic Recrystallization Evolution of Ti-6Al-4V Alloy in Two-Phase Temperature Range and a Wide Strain Rate Range, Comput. Mater. Sci., 2015, 97, p 136–147

    Article  Google Scholar 

  4. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, MTA, 1984, 15, p 1883–1892

    Article  Google Scholar 

  5. T.D. Kil, J.M. Lee, and Y.H. Moon, Formability Estimation of Ring Rolling Process by using Deformation Processing Map, Proc. Eng., 2014, 81, p 298–303

    Article  Google Scholar 

  6. S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184

    Article  Google Scholar 

  7. M. El Mehtedi, F. Gabrielli, and S. Spigarelli, Hot Workability in Process Modeling of a Bearing Steel by Using Combined Constitutive Equations and Dynamic Material Model, Mater. Des., 2014, 53, p 398–404

    Article  Google Scholar 

  8. P. Zhang, C. Hu, C.G. Ding, Q. Zhu, and H.Y. Qin, Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584

    Article  Google Scholar 

  9. A. Łukaszek Sołek and J. Krawczyk, The Analysis of the Hot Deformation Behaviour of the Ti-3Al-8V-6Cr-4Zr-4Mo Alloy, Using Processing Maps, a Map of Microstructure and of Hardness, Mater. Des., 2015, 65, p 165–173

    Article  Google Scholar 

  10. Y. Liu, Y. Ning, Y. Nan, H. Liang, Y. Li, and Z. Zhao, Characterization of Hot Deformation Behavior and Processing Map of FGH4096-GH4133B Dual Alloys, J. Alloys Compd., 2015, 633, p 505–515

    Article  Google Scholar 

  11. A. Amiri, M.H. Sadeghi, and G.R. Ebrahimi, Characterization of Hot Deformation Behavior of AMS 5708 Nickel-Based Superalloy Using Processing Map, J. Mater. Eng. Perform., 2013, 22, p 3940–3945

    Article  Google Scholar 

  12. D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, and L.T. Li, Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A, 2014, 591, p 183–192

    Article  Google Scholar 

  13. X. Shang, J. Zhou, X. Wang, and Y. Luo, Optimizing and Identifying the Process Parameters of AZ31 Magnesium Alloy in Hot Compression on the Base of Processing Maps, J. Alloys Compd., 2015, 629, p 155–161

    Article  Google Scholar 

  14. J. Yan, Q.L. Pan, B. Li, Z.Q. Huang, Z.M. Liu, and Z.M. Yin, Research on the Hot Deformation Behavior of Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr Alloy Using Processing Map, J. Alloys Compd., 2015, 632, p 549–557

    Article  Google Scholar 

  15. H. Rastegari, A. Kermanpur, A. Najafizadeh, D. Porter, and M. Somani, Warm Deformation Processing Maps for the Plain Eutectoid Steels, J. Alloys Compd., 2015, 626, p 136–144

    Article  Google Scholar 

  16. L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloys Compd., 2015, 623, p 69–78

    Article  Google Scholar 

  17. Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel During Compression at Elevated Temperatures, Mater. Lett., 2008, 62, p 2132–2135

    Article  Google Scholar 

  18. Y.C. Lin, M.S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, Comput. Mater. Sci., 2008, 42, p 470–477

    Article  Google Scholar 

  19. Y. Li, S. Zhao, S. Fan, and G. Yan, Study on the Material Characteristic and Process Parameters of the Open-Die Warm Extrusion Process of Spline Shaft with 42CrMo Steel, J. Alloys Compd., 2013, 571, p 12–20

    Article  Google Scholar 

  20. Y.C. Lin, M.-S. Chen, and J. Zhong, Prediction of 42CrMo steel flow stress at high temperature and strain rate, Mech. Res. Commun., 2008, 35, p 142–150

    Article  Google Scholar 

  21. Y.C. Lin, M.-S. Chen, and J. Zhong, Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel, J. Mater. Process. Technol., 2008, 205, p 308–315

    Article  Google Scholar 

  22. Y.C. Lin, M.S. Chen, and J. Zhang, Modeling of Flow Stress of 42CrMo Steel Under Hot Compression, Mater. Sci. Eng. A, 2009, 499, p 88–92

    Article  Google Scholar 

  23. G. Kang, Y. Liu, J. Ding, and Q. Gao, Uniaxial Ratcheting and Fatigue Failure of Tempered 42CrMo Steel: Damage Evolution and Damage-Coupled Visco-Plastic Constitutive Model, Int. J. Plast., 2009, 25, p 838–860

    Article  Google Scholar 

  24. Y.C. Lin, M.S. Chen, and J. Zhong, Numerical Simulation for Stress/Strain Distribution and Microstructural Evolution in 42CrMo Steel During Hot Upsetting Process, Comput. Mater. Sci., 2008, 43, p 1117–1122

    Article  Google Scholar 

  25. Y.C. Huang, Y.C. Lin, J. Deng, G. Liu, and M.-S. Chen, Hot Tensile Deformation Behaviors and Constitutive Model of 42CrMo Steel, Mater. Des., 2014, 53, p 349–356

    Article  Google Scholar 

  26. J.W. Zhang, L.T. Lu, K. Shiozawa, W.N. Zhou, and W.H. Zhang, Effect of Nitrocarburizing and Post-Oxidation on Fatigue Behavior of 35CrMo Alloy Steel in Very High Cycle Fatigue Regime, Int. J. Fatigue, 2011, 33, p 880–886

    Article  Google Scholar 

  27. J. Zhang, L. Lu, G. Cui, X. Shen, H. Yi, and W. Zhang, Effect of Process Temperature on the Microstructure and Properties of Gas Oxynitrocarburized 35CrMo Alloy Steel, Mater. Des., 2010, 31, p 2654–2658

    Article  Google Scholar 

  28. J.W. Zhang, L.T. Lu, P.B. Wu, J.J. Ma, G.G. Wang, and W.H. Zhang, Inclusion Size Evaluation and Fatigue Strength Analysis of 35CrMo Alloy Railway Axle Steel, Mater. Sci. Eng. A, 2013, 562, p 211–217

    Article  Google Scholar 

  29. Elevated-Temperature Properties of Ferritic Steels: Metals Handbook, 10th ed., ASM International, Materials Park, Ohio, 1990, Vol. 1, p 617–652, Int. J. Fatigue. doi:10.1016/0142-1123(91)90190-A

  30. Z.Q. Sheng and R. Shivpuri, Modeling Flow Stress of Magnesium Alloys at Elevated Temperature, Mater. Sci. Eng. A, 2006, 419, p 202–208

    Article  Google Scholar 

  31. R.E. Smallman and R.J. BiShop, Chapter 7—Mechanical Behaviour of Materials, Modern Physical Metallurgy and Materials Engineering, 6th ed., R.E. Smallman and R.J. BiShop, Ed., Butterworth-Heinemann, Oxford, 1999, p 197–258

    Chapter  Google Scholar 

  32. M.J. Luton and C.M. Sellars, Dynamic Recrystallization in Nickel and Nickel-Iron Alloys During High Temperature Deformation, Acta Metall., 1969, 17, p 1033–1043

    Article  Google Scholar 

  33. A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46, p 1679–1684

    Article  Google Scholar 

  34. S. Solhjoo, Determination of Critical Strain for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31, p 1360–1364

    Article  Google Scholar 

  35. H. Sun, Y. Sun, R. Zhang, M. Wang, R. Tang, and Z. Zhou, Study on Hot Workability and Optimization of Process Parameters of a Modified 310 Austenitic Stainless Steel Using Processing Maps, Mater. Des., 2015, 67, p 165–172

    Article  Google Scholar 

  36. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    Article  Google Scholar 

  37. Y.V.R.K. Prasad and T. Seshacharyulu, Processing Maps for Hot Working of Titanium Alloys, Mater. Sci. Eng. A, 1998, 243, p 82–88

    Article  Google Scholar 

  38. S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, Mater. Sci. Eng. A, 1998, 254, p 76–82

    Article  Google Scholar 

  39. Z. Yang, F. Zhang, C. Zheng, M. Zhang, B. Lv, and L. Qu, Study on Hot Deformation Behaviour and Processing Maps of Low Carbon Bainitic Steel, Mater. Des. A, 2015, 66, p 258–266

    Google Scholar 

  40. Y. Wang, Q. Pan, Y. Song, C. Li, and Z. Li, Hot Deformation and Processing Maps of X-750 Nickel-Based Superalloy, Mater. Des., 2013, 51, p 154–160

    Article  Google Scholar 

  41. J. Luo, L. Li, and M.Q. Li, The Flow Behavior and Processing Maps During the Isothermal Compression of Ti17 Alloy, Mater. Sci. Eng. A, 2014, 606, p 165–174

    Article  Google Scholar 

  42. F. Chen, Z. Cui, and S. Chen, Recrystallization of 30Cr2Ni4MoV Ultra-Super-Critical Rotor Steel During Hot Deformation. Part I: Dynamic Recrystallization, Mater. Sci. Eng. A, 2011, 528, p 5073–5080

    Article  Google Scholar 

  43. R. Ebrahimi and E. Shafiei, Mathematical Modeling of Single Peak Dynamic Recrystallization Flow Stress Curves in Metallic Alloys, Recrystallization, P.K. Sztwiertnia, Ed., Rijeka, InTech, 2012,

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National Program on Key Basic Research Project of China (No. 2014CB046702) and to Wang Zi in the School of Powder Metallurgy Research Institute of Central South University, Changsha, for providing the testing facilities for carrying out of the present investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-bing Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Zb., Huang, Yc. & Liu, Y. Plastic Deformation Behavior and Processing Maps of 35CrMo Steel. J. of Materi Eng and Perform 25, 1219–1227 (2016). https://doi.org/10.1007/s11665-016-1933-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1933-7

Keywords

Navigation