Skip to main content
Log in

Modeling effect of cooling conditions on solidification process during thermal cycle of rollers in twin-roll strip casting

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In the twin-roll strip casting process, molten steel solidifies by losing heat through its interface with the casting rollers. The heat extraction along this interface has an effect on the quality of the strips and should be affected by coating, rolls’ material, and cooling water flow rate. It is necessary to understand the effect of these casting parameters on the solidification structure of twin-roll strip casting. A three-dimensional computational domain is set up to simulate the solidification process of molten steel and heat exchange between steel strip/air, coating, rolls, and cooling water in the channel of roll sleeves. The effect of the cooling water intensity and flow intensity of molten steel in the pool on the solidification structures is studied during the thermal cycle of rolls in the twin-roll strip casting. These predicted results are helpful to optimize casting parameters and improve the strip quality in the twin-roll strip casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.G. Thomas, Steel Res. Int. 89 (2017) 1700312.

    Article  Google Scholar 

  2. S. Ge, M. Isac, R.I.L. Guthrie, ISIJ Int. 53 (2013) 729–742.

    Article  Google Scholar 

  3. T. Haga, J. Mater. Process. Technol. 130–131 (2002) 558–561.

    Article  Google Scholar 

  4. N. Zapuskalov, ISIJ Int. 43 (2003) 1115–1127.

    Article  Google Scholar 

  5. Z. Liu, B. Wang, Q. Zhang, J. Ma, J. Zhang, Metall. Mater. Trans. B 45 (2014) 262–271.

    Article  Google Scholar 

  6. A. Javaid, F. Czerwinski, J. Magnes. Alloy 7 (2019) 27–37.

    Google Scholar 

  7. H. Watari, K. Davey, M.T. Rasgado, T. Haga, S. Izawa, J. Mater. Process Technol. 155–156 (2004) 1662–1667.

    Article  Google Scholar 

  8. H.T. Liu, Z.Y. Liu, Y.Q. Qiu, G.M. Cao, C.G. Li, G.D. Wang, Mater. Charact. 60 (2009) 79–82.

    Article  Google Scholar 

  9. B. Wang, J.Y. Zhang, X.M. Li, W.H. Qi, Comput. Mater. Sci. 49 (2010) S135–S139.

    Article  Google Scholar 

  10. J.Y. Park, K.H. Oh, H.Y. Ra, ISIJ Int. 41 (2001) 70–75.

    Article  Google Scholar 

  11. Y. Hu, H. Hao, Int. J. Heat Mass Transf. 137 (2019) 1221–1231.

    Article  Google Scholar 

  12. C.M. Park, J.T. Choi, H.K. Moon, G.J. Park, J. Mater. Process. Technol. 209 (2009) 3714–3723.

    Article  Google Scholar 

  13. G.M. Zhu, Y.W. Zhang, J. Manuf. Sci. Eng. 136 (2014) 034501.

    Article  Google Scholar 

  14. S. Li, B. Sun, D. Qiao, Heavy Castings and Forgings (2017) No. 3, 27–29.

    Google Scholar 

  15. T. Evans, L. Strezov, Metall. Mater. Trans. B 31 (2000) 1081–1089.

    Article  Google Scholar 

  16. J. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A 31 (2000) 3167–3178.

    Article  Google Scholar 

  17. L. Strezov, J. Herbertson, G.R. Belton, Metall. Mater. Trans. B 31 (2000) 1023–1030.

    Article  Google Scholar 

  18. B. Liang, B. Wang, H. Zhong, N. Jie, Q. Zhai, J. Zhang, Metals 6 (2016) 53.

    Article  Google Scholar 

  19. H.B. Sun, L.J. Li, X.W. Cheng, W.S. Qiu, L.Y. Zeng, J.Q. Zhang, J. Iron Steel Res. 27 (2015) No. 5, 35–41.

    Google Scholar 

  20. M. Rappaz, C.A. Gandin, Acta Mater. 41 (1993) 345–360.

    Article  Google Scholar 

  21. D. Sediako, O. Sediako, K.J. Lin, Can. Metall. Quart. 38 (1999) 377–385.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wang.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Cf., Wang, B., Ma, J. et al. Modeling effect of cooling conditions on solidification process during thermal cycle of rollers in twin-roll strip casting. J. Iron Steel Res. Int. 30, 64–73 (2023). https://doi.org/10.1007/s42243-022-00822-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00822-3

Keywords

Navigation