Skip to main content
Log in

Relationship between crystallographic structure of complex inclusions MgAl2O4/Ti2O3/MnS and improved toughness of heat-affected zone in shipbuilding steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In accordance with the minimum degree of disregistry mechanism in oxide metallurgy, the intragranular acicular ferrite (IAF) generated by microalloying elements in austenite was studied. Herein, the effect of Mg treatment on the microstructure and toughness of the heat-affected zone (HAZ) in shipbuilding steel was investigated. Mg treatment produced inclusions that influenced the formation of acicular ferrite in the microstructure. This refined the HAZ microstructure and improved its toughness. Electron backscatter diffraction was used to determine the oxides of titanium and the MgO·Al2O3 or MgAl2O4 complex inclusions that induced the formation of IAF. MnS precipitated on MgAl2O4 on a specific habit plane and in a specific direction. MnS had a specific orientation relationship with MgAl2O4, i.e., \({\{100\}}_{{\mathrm{MgAl}}_{2}{\mathrm{O}}_{4}}\)//{100}MnS. The 35-mm-thick plate obtained in the industrial test after welding at a welding heat input of 120 kJ/cm had an average impact absorbed energy of 282.7 J at − 40 °C and 2 mm from the weld joint in the HAZ. The two-dimensional disregistry index between inclusions can be used as the basis for controlling their distribution and adsorption force. Microalloy addition in the order of Al–Mg–Ti is key to obtaining abundant dispersion and fine nucleation in austenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. Wang, R.D.K. Misra, M.H. Shi, P.Y. Zhang, Z.D. Wang, F.X. Zhu, G.D. Wang, Mater. Sci. Eng. A 594 (2014) 218–228.

    Article  Google Scholar 

  2. H. Suito, A.V. Karasev, M. Hamada, R. Inoue, K. Nakajima, ISIJ Int. 51 (2011) 1151–1162.

    Article  Google Scholar 

  3. Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto, ISIJ Int. 34 (1994) 829–835.

    Article  Google Scholar 

  4. J. Hu, L.X. Du, M. Zang, S.J. Yin, Y.G. Wang, X.Y. Qi, X.H. Gao, R.D.K. Misra, Mater. Charact. 118 (2016) 446–453.

    Article  Google Scholar 

  5. M. Hasegawa, K. Takeshita, Metall. Mater. Trans. B 3 (1978) 383–388.

    Article  Google Scholar 

  6. H. Ohta, H. Suito, ISIJ Int. 46 (2006) 480–489.

    Article  Google Scholar 

  7. Y. Hou, W. Zheng, Z. Wu, G. Li, N. Moelans, M. Guo, B.S. Khan, Acta Mater. 118 (2016) 8–16.

    Article  Google Scholar 

  8. X.B. Li, T.S. Zhang, M. Yin, C.J. Liu, M.F. Jiang, Ironmak. Steelmak. 46 (2017) 292–300.

    Article  Google Scholar 

  9. L.Y. Xu, J. Yang, R.Z. Wang, Y.N. Wang, W.L. Wang, Metall. Mater. Trans. A 47 (2016) 3354–3364.

    Article  Google Scholar 

  10. F. Chai, C.F. Yang, H. Su, Y.Q. Zhang, Z. Xu, J. Iron Steel Res. Int. 16 (2009) No. 1, 69–74.

    Article  Google Scholar 

  11. C.H. Chang, I.H. Jung, S.C. Park, H.S. Kim, H.G. Lee, Ironmak. Steelmak. 32 (2005) 251–257.

    Article  Google Scholar 

  12. S.H. Wang, C.C. Chiang, S.H. Chan, Mater. Sci. Eng. A 344 (2003) 288–295.

    Article  Google Scholar 

  13. H.S. Kim, C.H. Chang, H.G. Lee, Scripta Mater. 53 (2005) 1253–1258.

    Article  Google Scholar 

  14. S. Kimura, K. Nakajima, S. Mizoguchi, Metall. Mater. Trans. B 32 (2001) 79–85.

    Article  Google Scholar 

  15. Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, F. Tsukihashi, Metall. Mater. Trans. B 46 (2015) 1226–1241.

    Article  Google Scholar 

  16. Y. Kang, K. Han, J.H. Park, C.H. Lee, Metall. Mater. Trans. A 45 (2014) 4753–4757.

    Article  Google Scholar 

  17. D. Zhang, H. Terasaki, Y.I. Komizo, Acta Mater. 58 (2010) 1369–1378.

    Article  Google Scholar 

  18. Y. Li, X.L. Wan, L. Cheng, K.M. Wu, Mater. Sci. Technol. 32 (2016) 88–93.

    Article  Google Scholar 

  19. Z.H. Xiong, S.L. Liu, X.M. Wang, C.J. Shang, X. Li, R.D.K. Misra, Mater. Sci. Eng. A 636 (2015) 117–123.

    Article  Google Scholar 

  20. X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, H. Matsuura, Metall. Mater. Trans. B 49 (2018) 481–489.

    Article  Google Scholar 

  21. X.K. Cui, B. Song, Z.B. Yang, Z. Liu, L.F. Li, L. Wang, Steel Res. Int. 91 (2020) 1900563.

  22. Y. Min, X.B. Li, Z. Yu, C.J. Liu, M.F. Jiang, Steel Res. Int. 87 (2016) 1503–1510.

  23. F. Zhao, N.B. Zhou, M.B. Jiang, J.X. Xie, Y.Z. Liu, Steel Res. Int. 88 (2017) 133–143.

    Google Scholar 

  24. F. Ishikawa, T. Takahashi, ISIJ Int. 35 (1995) 1128–1133.

    Article  Google Scholar 

  25. Z.H. Xiong, S.L. Liu, X.M. Wang, C.J. Shang, R.D.K. Misra, Mater. Charact. 106 (2015) 232–239.

    Article  Google Scholar 

  26. Y. Murakami, Y. Takeuchi, K. Hase, S. Endo, T. Sakimoto, T. Handa, Int. J. Offshore Polar Eng. 24 (2014) 286–291.

    Google Scholar 

  27. A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, Nippon Steel Tech. Rep. 380 (2004) 1–6.

    Google Scholar 

  28. J.G. Huang, China Metallurgy Reports 2015–03–10 (001).

  29. B.X. Wang, F.X. Zhu, C. Wang, H.N. Lou, Z.D. Wang, G.D. Wang, Iron and Steel 54 (2019) No. 9, 12–21.

  30. C.H. Gu, K. Zhan, World Metals Reports 2018–08–12 (001).

  31. L.G. Zhu, Y. Wang, S.M. Wang, Q.J. Zhang, C.J. Zhang, Ironmak. Steelmak. 46 (2019) 499–507.

    Article  Google Scholar 

  32. D.S. Sarma, A.V. Karasev, P.G. Jönsson, ISIJ Int. 49 (2009) 1063–1074.

    Article  Google Scholar 

  33. A.J. Derado, Int. Mater. Rev. 48 (2003) 371–402.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 52004094 and 51874137) and the Hebei Province Natural Science Fund Project (E2021209037, E2020209044, and E2020209036) and Fundamental Innovation Team of High Quality Clean Steel in Tangshan from Tangshan Science and Technology Bureau (21130209D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-guang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhu, Lg., Huo, Jx. et al. Relationship between crystallographic structure of complex inclusions MgAl2O4/Ti2O3/MnS and improved toughness of heat-affected zone in shipbuilding steel. J. Iron Steel Res. Int. 29, 1277–1290 (2022). https://doi.org/10.1007/s42243-021-00725-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00725-9

Keywords

Navigation