Skip to main content
Log in

Characterization of inclusions and second-phase particles in high-Mn TWIP steels microalloyed with Ti, Ti/B, Nb, V and Mo, in as-solutioned condition

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In recent years there has been an increase in the field of research of advanced steels that have excellent mechanical properties combining high strength with excellent ductility. Within this range of advanced steels are the stable austenitic phase steels at room temperature of twinning induced plasticity known as TWIP. An important aspect to highlight about TWIP steels is their addition with different microalloying elements, generally less than 0.20 wt. %, which are forming precipitated phases such as carbides, nitrides and carbonitrides, and directly or indirectly control and/or modify microstructure and mechanical properties in these steels. Microalloying elements can cause a higher degree of hardening due to the formation of precipitates and grain refinement. The present research work studies the inclusions and second-phase particles formed in Fe–21Mn–1.3Si–1.6Al TWIP steels microalloyed with Ti, Nb, V, Mo and Ti/B in as-solution condition. TWIP steels melted in induction furnace were homogenized and hot-rolled at 1200 °C with reduction of 60 %. Subsequently, rolled plates were solubilized at 1100 °C followed by water quench. Thermodynamics-based predictions of inclusions and second-phases of different TWIP steels were carried out using JMatPro®V.9.1.2. Metallographic characterization was carried out by light optical and scanning electron microscopies (LOM, SEM), while second-phase particles characterization was performed using energy dispersion spectroscopy (SEM-EDS). Also, Vickers microhardness tests were carried out in accordance to ASTM E92 standard. In general, results showed the formation of inclusions of AlN and MnS at higher temperatures, which act as nuclei points for the precipitation particles of each type of microalloying element (TiN, TiC, Nb (C, N), VC and MoC) at lower temperatures. The studied TWIP steels exhibit similar microhardness values, since the microalloying elements are mostly dissolved in solid solution. The TWIP steels microalloyed with V and Ti exhibited the highest microhardness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Graessel, L. Krueger, G. Frommeyer and L.W. Meyer, Int. J. Plast. 16, 1391, (2000).

    Article  Google Scholar 

  2. H. Liu, J. Liu, S. K. Michelic, S. Shen, X. Su, B. Wu and H. Ding, Steel Res. Int, 12, 1723, (2016).

    Article  Google Scholar 

  3. X. L. Xin, J. Yang, Y. N. Wang, R. Z. Wang, W. L. Wang, H. G. Zheng and H. T. Hu. Ironmak. Steelmak. 43, 234 (2016).

    Article  CAS  Google Scholar 

  4. C. Zhuang, J. Liu, Z. Mi, H. Jiang, D. Tang and G. Wang. Steel Res. Int. 85, 1432, (2014).

    Article  CAS  Google Scholar 

  5. B. C. De Cooman, O. Kwon and K.G. Chin. Mater. Sci. Tech., 28, 513, (2012).

    Article  Google Scholar 

  6. J. Kim and B. C. De Cooman. Metall. Mater. Trans A, 42, 932, (2011).

    Article  CAS  Google Scholar 

  7. K. T. Park, G. Kim, S. K. Kim, S. W. Lee, S. W. Hwang and C. S. Lee. Met. Mater. Int., 16, 1, (2010).

    Article  CAS  Google Scholar 

  8. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier. Mater. Sci., 15, 141(2011).

    CAS  Google Scholar 

  9. S. Kang, A, Tuling, J.R. Banerjee, W.D. Gunawardana and B. Mintz, Mater. Sci. Tech., 27, 95, (2011).

    Article  CAS  Google Scholar 

  10. G. Gigacher, W. Krieger, P.R. Scheller and C. Thomser, Steel Res. Int., 76, 644, (2005).

    Article  CAS  Google Scholar 

  11. A. Grajcar, U. Galisz and L. Bulkowski, Arch. Mater. Sci. Eng. A, 50, 21 (2011).

    Google Scholar 

  12. J. H. Park, D. J. Kim and D. J. Min. Mater. Sci. Eng. A, 43, 2316, (2012).

    CAS  Google Scholar 

  13. ASTM E92-17, ASTM International, West Conshohocken, PA, (2017).

  14. H. Liu, J. Liu, S.K. Michelic, S. Shen, X. Su and B. Wu, H. Ding, Steel Res. Int. 12, 1723, (2016).

    Article  Google Scholar 

  15. H. R. Ezatpour, M. Torabi-Parizi, G. R. Ebrahimi and A. Momeni, Steel Res. Int., 89, 1, (2018).

    Article  Google Scholar 

  16. D.M. Haddrill, R.N. Younger and R.G. Baker, Acta Metall. 9, 982, (1961).

    Article  CAS  Google Scholar 

  17. H. Kwan-Hee, Mater. Sci. Eng. A. 279, 1, (2000).

    Article  Google Scholar 

  18. C. Scott, B. Remy, J-L. Collet, A. Cael, C. Bao, F. Danoix, B. Malard and C. Curfs, Int. J. Mater. Res. 102, 538 (2011).

    Article  CAS  Google Scholar 

  19. J. P. Chateau, A. Dumay, S. Allain and A. Jacques. J. Phys. Conf. Ser., 240, 1, (2010).

  20. T. N. Baker, Mater. Sci. Technol., 25, 1083, (2009).

    Article  CAS  Google Scholar 

  21. A. E. Salas-Reyes, I. Mejía, A. Bedolla-Jacuinde, A. Boulaajaj, J. Calvo and J. M. Cabrera, Mater. Sci. Eng. A, 77, 611, (2014).

    Google Scholar 

  22. L.A. Dobrzański, A. Grajcar and W. Borek, J. Achiev. Mater. and Manuf., 31, 218, (2008).

    Google Scholar 

  23. G.D. Funnell and R.J. Davies. Metals Technol. 5, 150, (1978).

    Article  CAS  Google Scholar 

  24. G.A. Osinkolu and A. Kobylanski, Scripta Metall. 21, 243, (1987).

    Article  CAS  Google Scholar 

  25. C.M. Sellars. Trans. Royal Soc. London. 288, 147, (1978).

    CAS  Google Scholar 

  26. H. O. Pierson, Handbook of refractory carbides and nitrides, Noyes Co, New Jersey, 1st Edition 110, (1996).

  27. S. Kang, J.G. Jung, and Y.K. Lee, Mater. Trans., 53, 2187, (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) during the project CB- 2012-01-0177572. The present research project was also supported by the Coordinación de la Investigación Científica-UMSNH (México) (CIC-1.8). D. Mijangos’s studies were sponsored by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México), N.B. 740053. Dr. J.M. Cabrera thanks the partial funding for his sabbatical leave in UMSNH received by CONACyT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mijangos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mijangos, D., Mejía, I. & Cabrera, J.M. Characterization of inclusions and second-phase particles in high-Mn TWIP steels microalloyed with Ti, Ti/B, Nb, V and Mo, in as-solutioned condition. MRS Advances 5, 3023–3033 (2020). https://doi.org/10.1557/adv.2020.389

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.389

Navigation