Skip to main content
Log in

Inclusions in wrought superalloys: a review

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Inclusions in wrought superalloys significantly affect the stability of the alloy properties and limit their use and development in aeroengines and other applications. The types and sources of inclusions in wrought superalloys were reviewed with analysis of the conditions of inclusion formation from the viewpoints of thermodynamics and kinetics. The thermodynamic data for inclusion formation in nickel-based and cobalt-based alloys were summarized and improved. The damage of inclusions to the fatigue and tensile properties and workability of these alloys and the mechanisms of crack initiation and propagation caused by inclusions were also discussed, and the effects of inclusions with different characteristics on crack propagation were reviewed. In addition, the control methods and mechanisms of inclusions in the triple smelting process (vacuum induction melting + protective electroslag remelting + vacuum arc remelting) were covered, providing a reference for improving the control technology of inclusions in wrought superalloys. Finally, the difficulties and development trends for inclusion control in wrought superalloys were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Z.J. Tang, T.M. Guo, Y. Fu, Z. Hui, C.S. Han, Metal World (2014) No. 1, 36–40.

  2. J.R. Li, J.C. Xiong, D.Z. Tang, Advanced high temperature structural materials and technology, National Defense Industry Press, Beijing, China, 2012.

    Google Scholar 

  3. Z.Y. Zhong, J.Y. Zhuang, J. Iron Steel Res. 15 (2003) No. z1, 1–9.

    Google Scholar 

  4. J.H. Du, X.D. Lv, J.X. Dong, W.R. Sun, Z.N. Bi, G.P. Zhao, Q. Deng, C.Q. Cui, H.P. Ma, B.J. Zhang, Acta Metall. Sin. 55 (2019) 1115–1132.

    Google Scholar 

  5. D.X. Wen, Y.C. Lin, H.B. Li, X.M. Chen, J. Deng, L.T. Li, Mater. Sci. Eng. A 591 (2014) 183–192.

    Article  Google Scholar 

  6. Y. Zhang, P.H. Li, C.L. Jia, T. Wang, X.X. Li, Y. Li, Mater. Rep. 32 (2018) 1496–1506.

    Article  Google Scholar 

  7. J.K. Tien, J.C. Borofka, M.E. Casey, JOM 38 (1986) 13–17.

    Article  Google Scholar 

  8. A. Mitchell, S.L. Cockcroft, C.E. Schvezov, A.J. Schmalz, J.Ν. Loquet, J. Fernihough, High Temp. Mater. Process 15 (1996) 27–40.

    Article  Google Scholar 

  9. C.E. Shamble, D.R. Chang, J.A. Corrado, in: Proceedings of the Fifth International Symposium on Superalloys, TMS-AIME, Warrendale, PA, USA, 1984, pp. 509–519.

  10. S.L. Cockcroft, T. Degawa, A. Mitchell, D.W. Tripp, A. Schmalz, in: S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (Eds.), Superalloys 1992, The Minerals, Metals, and Materials Society (TMS), San Diego, USA, 1992, pp. 577–586.

    Google Scholar 

  11. G.S. Chen, F.J. Liu, Q.Z. Wang, Z.X. Wang, Z.G. Wei, J. Iron Steel Res. 23 (2011) No. S2, 134–137.

    Google Scholar 

  12. R. Schafrik, R. Sprague, Key Eng. Mater. 380 (2008) 113–134.

    Article  Google Scholar 

  13. B.J. Zhang, S. Huang, W.Y. Zhang, Q. Tian, S.F. Chen, Acta Metall. Sin. 55 (2019) 1095–1114.

    Google Scholar 

  14. C.F. Miller, G.W. Simmons, R.P. Wei, Scripta Mater. 44 (2001) 2405–2410.

    Article  Google Scholar 

  15. R. Jiang, D.W. Ji, H.C. Shi, X.T. Hu, Y.D. Song, B. Gan, Mater. Sci. Technol. 35 (2019) 1265–1274.

    Article  Google Scholar 

  16. NTSB, Powerplant group chairman’s factual report, National Transportation Safety Board, Washington, USA, 2017.

  17. L. Wang, Y.M. Liu, G. Chen, J. Liu, Materials for Mechanical Engineering 43 (2019) 45–49.

    Google Scholar 

  18. B. Meng, W.L. Guo, C.M. Yu, Chinese Journal of Materials Research 21 (2007) 30–33.

    Google Scholar 

  19. R. Bandyopadhyay, M.D. Sangid, Acta Mater. 177 (2019) 20–34.

    Article  Google Scholar 

  20. L. Zhu, Z.R. Wu, X.T. Hu, Y.D. Song, Fatigue Fract. Eng. Mater. Struct. 39 (2016) 1150–1160.

    Article  Google Scholar 

  21. N. Rathod, S.D. Gupta, S.K. Gupta, P.K. Jha, Solid State Phenom. 171 (2011) 67–77.

    Article  Google Scholar 

  22. D. Brooksbank, K.W. Andrews, J. Iron Steel Inst. 206 (1968) 595–599.

    Google Scholar 

  23. C. Gu, Microstructure fatigue life prediction model based on the effect of inclusions in bearing steel, University of Science and Technology Beijing, Beijing, China, 2019.

    Google Scholar 

  24. T. Denda, P.L. Bretz, J.K. Tien, Metall. Trans. A 23 (1992) 519–526.

    Article  Google Scholar 

  25. C. Wang, Y.P. Zeng, X.S. Xie, J. Univ. Sci. Technol. Beijing 31 (2009) 557–562.

    Google Scholar 

  26. X. Huang, H. Yu, M. Xu, Y. Zhao, Int. J. Fatigue 42 (2012) 153–164.

    Article  Google Scholar 

  27. D. Texier, J. Cormier, P. Villechaise, J.C. Stinville, C.J. Torbet, S. Pierret, T.M. Pollock, Mater. Sci. Eng. A 678 (2016) 122–136.

    Article  Google Scholar 

  28. D. Texier, J.C. Stinville, M.P. Echlin, S. Pierret, P. Villechaise, T.M. Pollock, J. Cormier, Acta Mater. 165 (2019) 241–258.

    Article  Google Scholar 

  29. N. Späth, V. Zerrouki, P. Poubanne, J.Y. Guedou, in: E.A. Loria (Eds.), CBMM North America, Inc. Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, USA, 2001, pp. 173–183.

    Chapter  Google Scholar 

  30. F. Alexandre, R. Piques, S. Deyber, A. Pineau, High temperature creep-fatigue crack initiation in 718-DA Ni based superalloy, in: Fract. Mech. beyond 2000 ECF14, Cracow (Poland), 2002.

  31. P. Hoier, A. Malakizadi, P. Stuppa, S. Cedergren, U. Klement, Wear 400–401 (2018) 184–193.

    Article  Google Scholar 

  32. L.H. Xu, Z.F. Jiang, J.E. Ståhl, Modern Manufacturing Engineering (2010) No. 2, 91–94.

    Google Scholar 

  33. P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster, Int. J. Refract. Met. Hard Mater. 17 (1999) 163–170.

    Article  Google Scholar 

  34. A. Mitchell, High Temp. Mater. Process. 24 (2005) 101–109.

    Article  Google Scholar 

  35. W. Wang, Investigation of inclusion and purification in alloy GH3625, Lanzhou University of Technology, Lanzhou, China, 2016.

    Google Scholar 

  36. Z.J. Tang, T.M. Guo, S.Z. Kou, Y. Fu, S. Jin, The Chinese Journal of Nonferrous Metals 25 (2015) 2403–2413.

    Google Scholar 

  37. H.B. Zheng, S.F. Yang, Z.Y. Chen, J.S. Li, China Metall. 28 (2018) No. S1, 41–45.

    Google Scholar 

  38. J.L. Qu, S.F. Yang, Z.Y. Chen, J.H. Du, J.S. Li, D. Wang, Materials 12 (2019) 1852.

    Article  Google Scholar 

  39. Y. Wang, L. Zeng, H.J. Miao, L. Li, W.H. Hao, Materials Science and Technology 21 (2013) 122–128.

    Google Scholar 

  40. Z.Y. Chen, S.F. Yang, J.L. Qu, J.S. Li, A.P. Dong, Y. Gu, Materials 11 (2018) 1838.

    Article  Google Scholar 

  41. D. Wang, Study on precipitation and gradual change of inclusions in GH4169 superalloy during triple-smelting, University of Science and Technology Beijing, Beijing, China, 2020.

    Google Scholar 

  42. C. Schröder, U. Fischer, A. Schmidt, G. Schmidt, O. Volkova, C.G. Aneziris, Adv. Eng. Mater. 19 (2017) 1700146.

    Article  Google Scholar 

  43. X. Ren, J. Xiao, World Nonferrous Metals (2018) No. 10, 18–21.

    Google Scholar 

  44. Y.T. Ding, W. Wang, H.F. Li, T.B. Guo, Y. Hu, J.J. Liu, Rare Metal Mat. Eng. 47 (2018) 687–691.

    Google Scholar 

  45. W. Zhang, P.D. Lee, M. Mclean, in: T.M. Pollock (Eds.), Proceedings of the 9th Int. Symp. on Superalloys, TMS, Warrendale, USA, 2000, pp. 29–37.

  46. J.H. Park, Y.B. Kang, Metall. Mater. Trans. B 37 (2006) 791–797.

    Article  Google Scholar 

  47. J.S. Park, C.H. Lee, J.H. Park, Metall. Mater. Trans. B 43 (2012) 1550–1564.

    Article  Google Scholar 

  48. H. Itoh, M. Hino, S. Ban-Ya, Metall. Mater. Trans. B 28 (1997) 953–956.

    Article  Google Scholar 

  49. X.Y. Ding, W.Z. Wang, P. Fan, Metall. Mater. Trans. B 30 (1999) 271–277.

    Article  Google Scholar 

  50. Q.Z. Le, X.J. Zhang, J.Z. Cui, G.M. Lu, Acta Metall. Sin. 39 (2003) 35–42.

    Google Scholar 

  51. X.H. Huang, Principle of iron and steel metallurgy, Metallurgical Industry Press, Beijing, China, 1981.

    Google Scholar 

  52. G.K. Sigworth, J.F. Elliott, G. Vaughn, G.H. Geiger, Can. Metall. Quart. 16 (1977) 104–110.

    Article  Google Scholar 

  53. G.K. Sigworth, J.F. Elliott, Can. Metall. Quart. 15 (1976) 123–127.

    Article  Google Scholar 

  54. Y. Haruna, Removal of inclusions from cast superalloy revert, University of British Columbia, Vancouver, Canada, 1994.

    Google Scholar 

  55. W.V. Venal, G.H. Geiger, Metall. Trans. 4 (1973) 2567–2573.

    Article  Google Scholar 

  56. H. Wada, R.D. Pehlke, Metall. Trans. B 8 (1977) 443–450.

    Article  Google Scholar 

  57. S.W. Cho, H. Suito, Metall. Mater. Trans. B 26 (1995) 249–256.

    Article  Google Scholar 

  58. C.H. Wang, Q.Y. Han, Acta Metall. Sin. 24 (1988) 524–526.

    Google Scholar 

  59. A.A. Aleksandrov, V.Y. Dashevskii, Russ. Metall. 2016 (2016) 832–838.

    Article  Google Scholar 

  60. L.M. Wang, T. Du, J. Iron Steel Res. 1 (1989) No. 1, 15–20.

    Google Scholar 

  61. J.J. Ruan, N. Ueshima, K. Oikawa, J. Alloy. Compd. 737 (2018) 83–91.

    Article  Google Scholar 

  62. G.H. Gulliver, J. Inst. Met. 9 (1913) 120–157.

    Google Scholar 

  63. E. Kozeschnik, Metall. Mater. Trans. A 31 (2000) 1682–1684.

    Article  Google Scholar 

  64. X.F. Yan, J.X. Dong, Z.X. Shi, C.H. Duan, Rare Metal Mat. Eng. 48 (2019) 3183–3189.

    Google Scholar 

  65. L. Wang, Z.X. Xiao, L. Zhao, Y.G. Bai, F.X. Yin, Foundry Technology 41 (2020) 9–14.

    Google Scholar 

  66. Y. Zhang, X.X. Li, K. Wei, J.H. Wei, T. Wang, C.L. Jia, Z. Li, Z.Q. Ma, Acta Metall. Sin. 56 (2020) 1123–1132.

    Google Scholar 

  67. B.Y. Zhong, L. Wang, M.C. Zhang, J.X. Dong, J. Univ. Sci. Technol. Beijing 30 (2008) 760–764.

    Google Scholar 

  68. L. Wang, B.Y. Zhong, J.X. Dong, M.C. Zhang, Rare Metal Mat. Eng. 36 (2007) 2104–2108.

    Google Scholar 

  69. H.X. Zhu, Foundry Technology 36 (2015) 15–17.

    Google Scholar 

  70. X.Y. Gao, L. Zhang, Y.F. Luan, X.W. Chen, X.H. Qu, JOM 72 (2020) 3247–3255.

    Article  Google Scholar 

  71. D. Turnbull, B. Vonnegut, Ind. Eng. Chem. 44 (1952) 1292–1298.

    Article  Google Scholar 

  72. B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.

    Article  Google Scholar 

  73. M.L. Gan, Synthesis of TiN, TiC and Ti(C,N) and application in carbon brick, Wuhan University of Science and Technology, Wuhan, China, 2006.

    Google Scholar 

  74. K. Takachio, T. Nonomura, ISIJ Int. 36 (1996) S85–S88.

    Article  Google Scholar 

  75. Y.S. Xu, Y.Q. Wu, X.X. Wu, X.F. Chen, X.H. Gao, Q.J. Wan, Modern Manufacturing Technology and Equipment (2019) No. 7, 169–170.

    Google Scholar 

  76. J.H. Du, Q. Deng, J.L. Qu, X.D. Lv, M.Q. Wang, Z.N. Bi, T.H. Xu, J. Iron Steel Res. 23 (2011) No. S2, 130–133.

    Google Scholar 

  77. E.E. Brown, J.E. Stulga, L. Jennings. R.W. Salkeld, in: T.K. Tien (Eds.), Proceedings of the Fourth International Symposium, ASM, PA, USA, 1980, pp. 159–168.

  78. A. Mitchell, Mater. Sci. Eng. A 263 (1999) 217–223.

    Article  Google Scholar 

  79. J.M. Moyer, L.A. Jackman, C.B. Adasczik, R.M. Davis, R. Forbes-Jones, in: E.A. Loria (Eds.), Superalloys 718, 625, 706 and Various Derivatives, TMS, Warrendale, USA, 1994, pp. 39–48.

    Chapter  Google Scholar 

  80. Z.H. Jiang, X.F. Zhang, F.B. Liu, W. Gong, Iron and Steel 52 (2017) No. 9, 1–10.

    Google Scholar 

  81. V.V. Sidorov, P.G. Min, Russ. Metall. 2014 (2014) 982–986.

    Article  Google Scholar 

  82. J. Alexander, Mater. Sci. Technol. 1 (1985) 167–170.

    Article  Google Scholar 

  83. Y.J. Yang, Z.G. Wang, Y.C. Zhang, X.L. Yang, P. Zhang, J. Iron Steel Res. 23 (2011) No. S2, 5–8.

    Google Scholar 

  84. D. Li, F. Cosandey, G.E. Maurer, R. Foote, J.K. Tien, Metall. Trans. B 13 (1982) 603–611.

    Article  Google Scholar 

  85. S.W. Cho, H. Suito, Metall. Mater. Trans. B 25 (1994) 5–13.

    Article  Google Scholar 

  86. J.L. Qu, X.L. Zhang, S.F. Yang, Y. Gu, Y. Tao, Powder Metallurgy Industry 30 (2020) No. 5, 1–11.

    Google Scholar 

  87. J.P. Niu, K.N. Yang, T. Jin, X.F. Sun, H.R. Guan, Z.Q. Hu, Acta Metall. Sin. 37 (2001) 943–946.

    Google Scholar 

  88. N. An, J.J. Tian, Z.R. Li, Y.J. Niu, C.W. Li, H.W. Liu, J.Y. Xu, A vacuum induction melting method for reducing nitrogen content in superalloys, China, CN105238934A, 2015.

  89. Q.L. Li, H.R. Zhang, M. Gao, J.P. Li, T.X. Tao, H. Zhang, Int. J. Miner. Metall. Mater. 25 (2018) 696–703.

    Article  Google Scholar 

  90. X.H. Liu, C.H. Xu, X.F. Zheng, Vacuum smelting, Chemical Industry Press, Beijing, China, 2013.

    Google Scholar 

  91. H.Y. Zhao, J. Iron Steel Res. 24 (2012) No. 1, 19–24.

    Google Scholar 

  92. K. Takahashi, K. Utagawa, H. Shibata, S.Y. Kitamura, N. Kikuchi, Y. Kishimoto, ISIJ Int. 52 (2012) 10–17.

    Article  Google Scholar 

  93. Y. Kishimoto, S. Utada, T. Iguchi, Y. Mori, M. Osawa, T. Yokokawa, T. Kobayashi, K. Kawagishi, S. Suzuki, H. Harada, Metall. Mater. Trans. B 51 (2019) 293–305.

    Article  Google Scholar 

  94. M. Hohmann, S. Jönsson, Vacuum 41 (1990) 2173–2176.

    Article  Google Scholar 

  95. Y.H. Wang, J.Y. Li, S.F. Yang, J.S. Li, China Metall. 30 (2020) No. 7, 23–27.

    Google Scholar 

  96. G.R. Brazer, P.M. Curran, J.S. Erickson. Method of cleaning nickel alloy by filtering, USA, US3869282 A, 1975.

  97. F. Chen, X. Huang, Y. Wang, Y. Zhang, Z. Hu, Mater. Lett. 34 (1998) 372–376.

    Article  Google Scholar 

  98. X.Z. Guo, J.X. Dong, Y.H. Hu, X.S. Xie, J. Univ. Sci. Technol. Beijing 21 (1999) 245–247.

    Google Scholar 

  99. Z.C. Peng, F.Q. Xie, X.Q. Wu, J. Zhang, Journal of Materials Engineering (2013) No. 8, 11–15.

  100. W.Z. Jin, W. Zhang, T.J. Li, G.M. Yin, Chin. J. Vac. Sci. Technol. 31 (2011) 589–593.

    Google Scholar 

  101. Z.L. Gui, C.X. Wu, C.Q. Sun, Q.J. Li, X.Y. Dai, Journal of Materials Engineering (2002) No. 3, 20–23.

  102. Y.W. Dong, Z.H. Jiang, Y.L. Cao, A. Yu, H. Dong, Metall. Mater. Trans. B 45 (2014) 1315–1324.

    Article  Google Scholar 

  103. X. Gen. Z.H. Jiang, F.B. Liu, L.K. Liang, Iron and Steel 44 (2009) No. 12, 42–45.

  104. Z.B. Li, W.H. Zhuo, Y.D. Li, Iron and Steel 15 (1980) No. 1, 20–26.

    Google Scholar 

  105. T.J. Wen, L.F. Zhang, China Metall. 28 (2018) No. S1, 34–40.

    Google Scholar 

  106. S.F. Yang, J.S. Li, C. Liu, L.Y. Sun, H.B. Yang, Metall. Mater. Trans. B 45 (2014) 2453–2463.

    Article  Google Scholar 

  107. Q. Wang, R.T. Wang, Z. He, G.Q. Li, B.K. Li, H.B. Li, Int. J. Heat Mass Transfer 125 (2018) 1333–1344.

    Article  Google Scholar 

  108. R.T. Wang, G.Q. Li, Q. Wang, Y. Liu, B.K. Li, J. Iron Steel Res. 30 (2018) 104–112.

    Google Scholar 

  109. A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, J. Bohacek, Steel Res. Int. 89 (2018) 1700100.

    Article  Google Scholar 

  110. G. Du, J. Li, Z.B. Wang, ISIJ Int. 58 (2018) 78–87.

    Article  Google Scholar 

  111. Y. Liu, Z. Zhang, G.Q. Li, Q. Wang, L. Wang, B.K. Li, Steel Res. Int. 88 (2017) 1700058.

    Article  Google Scholar 

  112. X.C. Chen, C.B. Shi, H.J. Guo, F. Wang, H. Ren, D. Feng, Metall. Mater. Trans. B 43 (2012) 1596–1607.

    Article  Google Scholar 

  113. Z.Z. Wang, D.H. Zhou, X. Jin, G.S. Chen, J. Iron Steel Res. 15 (2003) No. z1, 338–343.

    Google Scholar 

  114. H.T. Zhu, X.H. L, B.M. Zhu, Y.J. Yang, X.C. Bai, X.M. Zhang, in: Zcademic Committee of the Superalloys, CSM (Eds.), The 14th Superalloy Annual Conference, Huangshi, China, 2019, pp. 421–423.

  115. W. Zhang, P.D. Lee, M. McLean, Metall. Mater. Trans. A 33 (2002) 443–454.

    Article  Google Scholar 

  116. H.H. Kong, S.F. Yang, J.L. Qu, J.H. Du, Y.C. Huang, Acta Aeronaut. Astronaut. Sin. 41 (2020) No. 4, 304–311.

    Google Scholar 

  117. P.C.L. Pfeil, L.B. Griffiths, J. Nucl. Mater. 1 (1959) 244–248.

    Article  Google Scholar 

  118. G.D. Zhang, J.J. Liu, Z.Q. Chen, J.Y. Liu, W.D. Hua, X.S. Wang, W.F. Zhang, Y.Q. Wang, Journal of Tsinghua University (Science and Technology) 12 (1965) No. 1, 21–32.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Nos. 52074030, 51874103, and 51974020].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-feng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Sf., Yang, Sl., Qu, Jl. et al. Inclusions in wrought superalloys: a review. J. Iron Steel Res. Int. 28, 921–937 (2021). https://doi.org/10.1007/s42243-021-00617-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00617-y

Keywords

Navigation