Skip to main content
Log in

Physical simulation of bubble refinement in bottom blowing process with mechanical agitation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to increase the contact area and promote the mass transfer process of gas and liquid, the process of the bubble refinement in a metallurgical reactor with mechanical agitation was studied by physical simulation. Based on the capillary number, a prediction equation for the bubble refinement was established. The effects of the gas flow rate, the stirring speed and the stirring depth on the bubble refinement in the reactor were discussed in detail. The distribution of the bubble diameter in the reactor was obtained under different conditions. The results show that when the stirring speed reaches 300 r/min, the bubble diameter mainly distributes in the range of 1–2 mm. A higher gas flow rate may increase the number of bubbles in the melt and promote the bubble refinement process. The mechanism of bubble refinement under mechanical agitation was analyzed, and the results indicated that the stirring speed, the blade area and the blade inclination are the main influencing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.P. Sun, Y.C. Liu, M.J. Lu, ISIJ Int. 49 (2009) 771–776.

    Article  Google Scholar 

  2. D. Lindström, D. Sichen, Metall. Mater. Trans. B 46 (2015) 83–92.

    Article  Google Scholar 

  3. W.J. Ma, H.B. Li, Y. Cui, B. Chen, G.L. Liu, J.L. Ji, ISIJ Int. 57 (2017) 214–219.

    Article  Google Scholar 

  4. G.A. Irons, R.I.L. Guthrie, Metall. Trans. B 12 (1981) 755–767.

    Article  Google Scholar 

  5. J. Yang, K. Okumura, M. Kuwabara, M. Sano, Metall. Mater. Trans. B 34 (2003) 619–629.

    Article  Google Scholar 

  6. J. Yang, S. Ozaki, R. Kakimoto, K. Okumura, M. Kuwabara, M. Sano, ISIJ Int. 41 (2001) 945–954.

    Article  Google Scholar 

  7. J. Yang, K. Okumura, M. Kuwabara, M. Sano, ISIJ Int. 41 (2001) 965–973.

    Article  Google Scholar 

  8. J. Yang, K. Okumura, M. Kuwabara, M. Sano, ISIJ Int. 42 (2002) 595–607.

    Article  Google Scholar 

  9. G.A. Irons, R.I.L. Guthrie, Can. Metall. Quart. 19 (1980) 381–387.

    Article  Google Scholar 

  10. N.J. Themelis, P. Goyal, Can. Metall. Quart. 22 (1983) 313–320.

    Article  Google Scholar 

  11. S. Mukawa, Y. Ueshima, M. Sano, J. Yang, M. Kuwabara, ISIJ Int. 46 (2006) 1778–1782.

    Article  Google Scholar 

  12. W. Zheng, H. Tu, G.Q. Li, X. Shen, Y.L. Xu, C.Y. Zhu, K. Lu, J. Univ. Sci. Technol. Beijing 36 (2014) No. S1, 53–59.

    Google Scholar 

  13. S.G. Zheng, M.Y. Zhu, Acta Metall. Sin. 42 (2006) 1143–1148.

    Google Scholar 

  14. J.H. Ji, R.Q. Liang, J.C. He, ISIJ Int. 57 (2017) 453–462.

    Article  Google Scholar 

  15. G. Irons, A. Senguttuvan, K. Krishnapisharody, ISIJ Int. 55 (2015) 1–6.

    Article  Google Scholar 

  16. Y. Liu, Z.M. Zhang, S. Masamichi, J. Zhang, P. Shao, T.A. Zhang, J. Iron Steel Res. Int. 21 (2014) 135–143.

    Article  Google Scholar 

  17. Y. Liu, M. Sano, T.A. Zhang, Q. Wang, J.C. He, ISIJ Int. 49 (2009) 17–23.

    Article  Google Scholar 

  18. X.F. Xu, J. Zhang, F.X. Liu, X.J. Wang, W. Wei, Z.J. Liu, Int. J. Multiphase Flow 95 (2017) 84–90.

    Article  Google Scholar 

  19. T. Haiyan, G. Xiaochen, W. Guanghui, W. Yong, ISIJ Int. 56 (2016) 2161–2170.

    Article  Google Scholar 

  20. R. Hagemann, R. Schwarze, H.P. Heller, P.R. Scheller, Metall. Mater. Trans. B 44 (2013) 80–90.

    Article  Google Scholar 

  21. F.M. Meng, Fundamentals of metallurgical macro-kinetics, Metallurgical Industry Press, Beijing, China, 2014.

    Google Scholar 

  22. P.J. Pritchard, J.W. Mitchell, Introduction to fluid Me980-chanics, John Wiley & Sons, USA, 2011.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (U1508217, U1702253 and 51774078) and the Fundamental Research Funds for the Central Universities (N172506009 and N170908001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-an Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Jm., Dou, Zh., Zhang, Ta. et al. Physical simulation of bubble refinement in bottom blowing process with mechanical agitation. J. Iron Steel Res. Int. 27, 1137–1144 (2020). https://doi.org/10.1007/s42243-020-00368-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00368-2

Keywords

Navigation