Skip to main content

Advertisement

Log in

Improvement of desulfurization efficiency of molten iron with magnesium vapor produced In situ by aluminothermic reduction of magnesium oxide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Based on the desulfurization process of molten iron with magnesium vapor produced in situ by the aluminothermic reduction of magnesium oxide, methods for improving the desulfurization efficiency of magnesium (η S,Mg) have been studied.

By use of the mixed-control model of gas- and liquid-phase mass transfer developed in a previous article, it is shown that η S,Mg can be improved by reducing the bubble size, increasing the lance immersion depth, dividing MgO-Al pellet charging into several portions, and lowering the operating temperature. A new method for improving η S,Mg, by adjusting the initial magnesium molar ratio in the bubble (N Mg,0) through a change in the Ar carrier gas flow rate, is proposed. The optimum initial magnesium molar ratio in the bubble (N Mg,opt) for obtaining the maximum η S,Mg value exists, and its value changes with the sulfur concentration in the molten iron. Under the condition of N Mg,0=N Mg,opt, reducing the bubble diameter improves η S,Mg and decreases the Ar carrier gas flow rate that is needed to adjust N Mg,0 to N Mg,opt. The aluminum consumption is decreased by the use of the 4MgO-2Al pellet instead of the 3MgO-2Al pellet and is further decreased by lowering the temperature from 1673 to 1623 K.

Experimental examinations of the influences of lance immersion depth, pellet charging method, and carrier gas flow-rate pattern have been conducted. Reasonable agreement between the calculated and the experimental results indicates the validity of the present optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

surface area of a bubble (m2)

A s :

surface area of the melt (m2)

A(t 1):

surface area of a bubble at t=t 1 during the bubble formation (m2)

D l,Mg :

diffusion coefficient of magnesium in the melt (m2/s)

D l,S :

diffusion coefficient of sulfur in the melt (m2/s)

d B :

bubble diameter (m)

f S :

activity coefficient of sulfur

g :

gravitational acceleration (m/s2)

ΔG o :

standard Gibbs free energy change (kJ/mol)

H :

Henry’s constant for dissolution of magnesium vapor into the melt (atm−1)

H L :

lance immersion depth (m)

K MgS :

equilibrium constant of Reaction [7](K MgSa MgS/(P Mg·a S))

k g,Mg :

mass-transfer coefficient of magnesium in the bubble (m/s)

k l,S :

mass-transfer coefficient of sulfur in the melt (m/s)

k l,Mg :

mass-transfer coefficient of magnesium in the melt (m/s)

k l,Mg,S :

mass-transfer coefficient of magnesium to the melt surface (m/s)

M Mg :

molecular mass of magnesium (kg/mol)

M S :

molecular mass of sulfur (kg/mol)

N Mg,0 :

initial molar ratio of magnesium in a bubble

N Mg,opt :

optimum initial molar ratio of magnesium in a bubble

n Mg,B :

number of moles of magnesium in a bubble (mol)

n Mg,f :

number of moles of magnesium dissolved into the melt by one bubble during its formation (mol)

n Mg,l :

number of moles of magnesium in the melt (mol)

n S :

number of moles of sulfur in the melt (mol)

n S,f :

number of moles of sulfur removed by one bubble during its formation (mol)

P Mg :

magnesium partial pressure in the bubble (atm)

P Mg,0 :

initial magnesium partial pressure in the bubble (atm)

P Mg,e :

magnesium partial pressure in equilibrium with sulfur in the melt (atm)

P Mg,i :

magnesium partial pressure on the bubble surface (atm)

[ppm Mg]:

magnesium concentration in the melt

[ppm Mg] i :

magnesium concentration on the bubble surface

[ppm Mg] S :

magnesium concentration on the melt surface

R :

gas constant (atm·m3·mol−1·K−1)

[ppm S]:

sulfur concentration in the melt

[ppm S] i :

sulfur concentration on the bubble surface

Q Ar :

Ar carrier gas flow rate at 298 K and 1 atm (m3/s)

Q Ar,opt :

optimum Ar carrier gas flow rate at 298 K and 1 atm (m3/s)

T :

temperature (K)

t :

time (s)

t′:

time for calculating n S,f (s)

t 1 :

time for calculating n S,f (s)

t f :

bubble formation time (s)

t pe :

time for charging pellet (s)

V m :

volume of the melt (m3)

v B :

ascent velocity of a bubble (m/s)

W 0,Al :

initial mass of Al in the pellet (g)

W 0,MgO :

initial mass of MgO in the pellet (g)

W Al :

mass of aluminum consumption per ton of melt (kg/t)

W Mg :

mass of magnesium produced by reduction of pellet (g)

W Mg,S :

mass of Mg actually reacted with sulfur (g)

W pe :

mass of pellet consumption per ton of the melt (kg/t)

W R,Al :

mass of Al consumed during the experiment (g)

W R,MgO :

mass of MgO reduced during the experiment (g)

W to :

initial total mass of MgO and aluminum in the pellet (g)

x :

vertical distance from nozzle exit (m)

η R,Al :

utilization efficiency of aluminum (pct)

η R,MgO :

reduction efficiency of magnesium oxide (pct)

η S,Mg :

desulfurization efficiency of magnesium (pct)

η S,P :

desulfurization efficiency of the pellet (pct)

ρ m :

melt density (kg/m3)

σ :

surface tension of melt (N/m)

References

  1. M.C. Ashton, R.K. Buhr, J.G. Magny, and K.G. Davis: Ironmaking and Steelmaking, 1975, vol. 2, pp. 111–14.

    CAS  Google Scholar 

  2. P.J. Koros, R.G. Petrushka, and R.G. Kerlin: Iron Steelmaker, 1977, vol. 4 (6), pp. 34–40.

    CAS  Google Scholar 

  3. G.A. Irons and R.I.L. Guthrie: Metall. Trans. B, 1981, vol. 12B, pp. 755–69.

    CAS  Google Scholar 

  4. A. Aoyagi, Z. Mukuda, S. Takada, and S. Oomiya: CAMP-ISIJ, 1994, vol. 7, p. 221.

    Google Scholar 

  5. Y. Hiraga, K. Gennai, and J. Harama: CAMP-ISIJ, 1996, vol. 9, pp. 225.

    Google Scholar 

  6. H. Shima, M. Iguchi, H. Huzihara, H. Nagahama, K. Ounuki, and K. Muranishi: CAMP-ISIJ, 1995, vol. 8, p. 106.

    Google Scholar 

  7. H. Tomida, T. Kunishima, S. Kadou, and Z. Ikeda: CAMP-ISIJ, 1994, vol. 7, p. 222.

    Google Scholar 

  8. K. Kimura, I. Kikuti, S. Kodaira, Y. Komatsu, Z. Hukumi, and T. Toyota: CAMP-ISIJ, 1995, vol. 8, p. 105.

    Google Scholar 

  9. K. Nakanishi, A. Ejima, T. Suzuki, and F. Sudo: Tetsu-to-Hagané, 1978, vol. 64, pp. 1323–32.

    CAS  Google Scholar 

  10. M. Mikuni, K. Takahashi, Y. Ueshima, A. Aoyagi, O. Okuda, and R. Nagai: CAMP-ISIJ, 1995, vol. 8, p. 929.

    Google Scholar 

  11. S. Yamaguchi, T. Uemura, H. Nashiwa, and H. Sugita: Ironmaking and Steelmaking, 1977, vol. 5, pp. 276–79.

    Google Scholar 

  12. S. Hosohara, Y. Kato, H. Nakato, and K. Sorimachi: Tetsu-to-Hagané, 2002, vol. 88, pp. 129–35.

    CAS  Google Scholar 

  13. T. Fujita, K. Matsuo, and S. Nakashima: CAMP-ISIJ, 1994, vol. 7, p. 218.

    Google Scholar 

  14. J. Hirama, K. Gennai, Y. Hiraga, and Y. Nakajima: CAMP-ISIJ, 1995, vol. 8, p. 104.

    Google Scholar 

  15. G.A. Irons and R.I.L. Guthrie: Ironmaking and Steelmaking, 1981, vol. 8, pp. 114–21.

    CAS  Google Scholar 

  16. G.A. Irons and R.I.L. Guthrie: Can. Metall. Q., 1982, vol. 21, pp. 429–43.

    CAS  Google Scholar 

  17. J. Yang, S. Ozaki, R. Kakimoto, K. Okumura, M. Kuwabara, and M. Sano: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 945–54.

    CAS  Google Scholar 

  18. J. Yang, K. Okumura, M. Kuwabara, and M. Sano: Iron Steel Inst. Jpn. Int., 2001, vol. 41, pp. 965–73.

    CAS  Google Scholar 

  19. J. Yang, K. Okumura, M. Kuwabara, and M. Sano: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 595–602.

    CAS  Google Scholar 

  20. J. Yang, K. Okumura, M. Kuwabara, and M. Sano: Iron Steel Inst. Jpn. Int., 2002, vol. 42, pp. 685–93.

    CAS  Google Scholar 

  21. L. Hong, K. Okumura, and M. Sano: Metall. Trans. B, 1999, vol. 30B, pp. 1003–08.

    Article  CAS  Google Scholar 

  22. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press Inc., New York, NY, 1980, pp. 5–24.

    Google Scholar 

  23. R. Higbie: Trans. AICHE J., 1935, vol. 31, pp. 365–89.

    CAS  Google Scholar 

  24. D.W.V. Krevelen and P.J. Hoftijzer: Chem. Eng. Progr., 1950, vol. 46, pp. 29–35.

    Google Scholar 

  25. The Japan Institute of Metals: Metal Data Book, Maruzen, Tokyo, 1993, p. 55.

    Google Scholar 

  26. D.R. Poirier and G.H. Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994, pp. 453–56.

    Google Scholar 

  27. T. Tadaki and S. Maeda: Kagaku Kougaku (Chem. Eng., Jpn.), 1963, vol. 27, pp. 147–55.

    Google Scholar 

  28. J. Shan, K. Okumura, M. Kuwabara, and M. Sano: Tetsu-to-Hagané, 2001, vol. 87, pp. 635–42.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Okumura, K., Kuwabara, M. et al. Improvement of desulfurization efficiency of molten iron with magnesium vapor produced In situ by aluminothermic reduction of magnesium oxide. Metall Mater Trans B 34, 619–629 (2003). https://doi.org/10.1007/s11663-003-0032-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-003-0032-y

Keywords

Navigation