Skip to main content
Log in

Multiscale and Adaptive Modeling of Bubbling Flow and Slag Layer Behavior in Gas-Stirring Vessels

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The bubble transportation and bubble–steel–slag interactions in gas-stirring vessels in metallurgical processes is a quite complicated multiphase flow, intricate with multiple time and space scales. The present work implements a two-way discrete-continuum transition algorithm in a multiscale model for the simulation of bubble injection, coalescence, and its interaction with the bath and slag layer. The interfaces between liquid steel, gas, and slag are captured using the volume of fluid (VOF) and adaptive mesh refinement (AMR) methods for adaptively improving the interface resolution. For microbubbles that are unable to be resolved, a discrete phase model (DPM) is applied by considering the coalescence using a modified collision model. Most importantly, the two-way transition between DPM and VOF-AMR is mainly achieved by introducing criteria and specific source terms into the equations. The predicted bubble diameter evolution and the slag eye size in the vessel are both in good agreement with the experimental measurements. Using the present modeling framework, the bubbling flow and the slag layer behavior are both well represented, including the detailed phenomena of bubble aggregation and breakage, bubble splashing on the top surface, slag eye fluctuation, and slag droplet formation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data and Code Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. The code of the present work can also be available.

References

  1. Y. Liu, M. Ersson, H. Liu, P.G. Jonsson, and Y. Gan, Metall. Mater. Trans. B 50, 555 (2019).

    Article  Google Scholar 

  2. A.E. Anderson, F. Tesfaye, C.O. Iloeje, and N. Stuart, JOM 74, 1485 (2022).

    Article  Google Scholar 

  3. L. Li, X. Li, Z. Zhu, and B. Li, Powder Technol. 373, 14 (2020).

    Article  Google Scholar 

  4. B. Li, H. Yin, C. Zhou, and F. Tsukihashi, ISIJ Int. 48, 1704 (2008).

    Article  Google Scholar 

  5. C.A. Llanos, S. Garcia, J.A. Ramos-Banderas, J.D.J. Barreto, and G. Solorio, ISIJ Int. 50, 396 (2010).

    Article  Google Scholar 

  6. Q. Li and P.C. Pistorius, Metall. Mater. Trans. B 52B, 1532 (2021).

    Article  Google Scholar 

  7. D.H. Zhang, M.G. Shen, C. Wu, Q.H. Qi, Q. Xu, and Z. Zhang, J. Iron Steel Res. Int. 22, 48 (2015).

    Article  Google Scholar 

  8. L. Li, Z. Liu, B. Li, H. Matsuura, and F. Tsukihashi, ISIJ Int. 55, 1337 (2015).

    Article  Google Scholar 

  9. W. Lou and M. Zhu, Metall. Mater. Trans. B 48, 3196 (2017).

    Article  Google Scholar 

  10. Z. Liu, L. Li, F. Qi, B. Li, M.F. Jiang, and F. Tsukihashi, Metall. Mater. Trans. B 46B, 406 (2015).

    Article  Google Scholar 

  11. Z.Q. Liu, B. Li, A. Vakhrushev, M.H. Wu, and A. Ludwig, Steel Res. Int. 90, 1800117 (2019).

    Article  Google Scholar 

  12. L. Wang, J. Yang, and Y. Liu, Metall. Mater. Trans. B 53B, 3707 (2022).

    Article  Google Scholar 

  13. X. Sun and M. Sakai, Chem. Eng. Sci. 134, 531 (2015).

    Article  Google Scholar 

  14. L. Li and B. Li, Particuology 39, 109 (2018).

    Article  Google Scholar 

  15. D. Jain, J.A.M. Kuipers, and N.G. Deen, Chem. Eng. Sci. 119, 134 (2014).

    Article  Google Scholar 

  16. H. Liu, Z. Qi, and M. Xu, Steel Res. Int. 82, 440 (2011).

    Article  Google Scholar 

  17. S.W.P. Cloete, J.J. Eksteen, and S.M. Bradshaw, Miner. Eng. 46, 16 (2013).

    Article  Google Scholar 

  18. Q. Cao and L. Nastac, JOM 70, 2071 (2018).

    Article  Google Scholar 

  19. Q. Cao and L. Nastac, Ironmak. Steelmak 47, 873 (2020).

    Article  Google Scholar 

  20. W. Yang, Z. Luo, Y. Gu, Z. Liu, and Z. Zou, Powder Technol. 361, 769 (2020).

    Article  Google Scholar 

  21. Y. Yin and J. Zhang, ISIJ Int. 61, 853 (2021).

    Article  Google Scholar 

  22. J. Zhang, W. Lou, P. Shao, and M. Zhu, Metall. Mater. Trans. B 53B, 3585 (2022).

    Article  Google Scholar 

  23. L. Li and B. Li, JOM 68, 2160 (2016).

    Article  Google Scholar 

  24. L. Li, B. Li, and Z. Liu, ISIJ Int. 57, 1980 (2017).

    Article  Google Scholar 

  25. L. Li, W. Ding, F. Xue, C. Xu, and B. Li, JOM 70, 2900 (2018).

    Article  Google Scholar 

  26. V.T. Nguyen and W.G. Park, Comput. Fluids 152, 104 (2017).

    Article  MathSciNet  Google Scholar 

  27. S. Popinet, J. Comput. Phys. 228, 5838 (2009).

    Article  MathSciNet  Google Scholar 

  28. R. Zhou, C. Shen, and X. Jin, J. Zhejiang Univ.-SC A 21, 684 (2020).

    Article  Google Scholar 

  29. M.R. Ridolfi and P. Folgarait, Int. J. Multiph. Flow 132, 103431 (2020).

    Article  MathSciNet  Google Scholar 

  30. S.B. Pope, Cambridge Univ. Press, Cambridge, UK, (2011).

  31. C. Speziale, AIAA J. 36, 173 (1998).

    Article  Google Scholar 

  32. L. Li, Z. Wang, X. Li, and Z. Zhu, China Ocean Eng. 35, 361 (2021).

    Article  Google Scholar 

  33. F. Nicoud and F. Ducros, Flow Turbul. Combust. 62, 183 (1999).

    Article  Google Scholar 

  34. N. Arya and A. De, Comput. Math. Appl. 78, 2035 (2019).

    Article  MathSciNet  Google Scholar 

  35. L. Li, C. Xu, C. Shi, X. Han, and W. Shen, Wind Energy 24, 116 (2021).

    Article  Google Scholar 

  36. H. Cheng, X. Long, B. Ji, X. Peng, and F. Mohamed, Int. J. Multiph. Flow 134, 103441 (2021).

    Article  Google Scholar 

  37. J.U. Brackbill, D.B. Kothe, and C. Zemach, J. Comput. Phys. 100, 335 (1922).

    Article  Google Scholar 

  38. H. Duan, Y. Ren, and L. Zhang, JOM 70, 2128 (2018).

    Article  Google Scholar 

  39. M. Ishii and N. Zuber, AIChE J. 25, 843855 (1979).

    Article  Google Scholar 

  40. H. Yang, J. Xue, L. Li, X. Li, P. Lin, and Z. Zhu, J. Appl. Fluid Mech. 15, 843 (2022).

    Google Scholar 

  41. L. Li, D. Hu, Y. Liu, B. Wang, C. Shi, J. Shi, and C. Xu, J. Hydrodyn. 32, 398 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support by the National Natural Science Foundation of China (Grant Nos. U21A20126, 52006197), the National Science Foundation of Zhejiang Province (Grant Nos. LQ21E060012, LR20E090001), the Key Research and Development Program of Zhejiang Province (Grant Nos. 2021C05006, 2021C01156).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linmin Li, Xiaojun Li or Xun Sun.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Xu, W., Li, X. et al. Multiscale and Adaptive Modeling of Bubbling Flow and Slag Layer Behavior in Gas-Stirring Vessels. JOM 75, 1357–1370 (2023). https://doi.org/10.1007/s11837-022-05675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05675-5

Navigation