Skip to main content

Advertisement

Log in

Recent advances of nanoporous metal-based catalyst: synthesis, application and perspectives

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Nanoporous metal-based catalysts with the specific bicontinuous interconnected ligaments/pores network exhibit highly active performances in application for energy conversion, which represent a broader trend in the design of catalyst materials. These promising nanomaterials commendably provide highly conductive porous morphologies with reduced contact resistances, large electrochemical surface areas with enhanced catalytic efficiency, and controllable synthesis for regulating the performances. Thus, we highlight recent designs of nanoporous metals, alloys, transition metal compounds and hierarchical structures mainly employed in catalysis process. We discuss applied strategies to utilize characteristics of nanoporous metals in the energetic field of catalytic reactions. Moreover, development and evolution of novel controllable synthesis methods are applied in preparation of nanoporous non-noble metals and transition metal compounds. Finally, we present some outlooks and perspectives on the nanoporous metal catalyst and suggest ways for achieving alternative materials in catalysis applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.A. Turner, Science 305 (2004) 972–974.

    Google Scholar 

  2. Z.W. Chen, L.X. Chen, C.C. Yang, Q. Jiang, J. Mater. Chem. A 7 (2019) 3492−3515.

    Google Scholar 

  3. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, D.G. Nocera, Chem. Rev. 110 (2010) 6474−6502.

    Google Scholar 

  4. I. Roger, M.A. Shipman, M.D. Symes, Nat. Rev. Chem. 1 (2017) 0003.

    Google Scholar 

  5. Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Science 355 (2017) eaad4998.

  6. N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, H.M. Chen, Chem. Soc. Rev. 46 (2017) 337–365.

    Google Scholar 

  7. X.X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148–5180.

    Google Scholar 

  8. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116 (2016) 3594–3657.

    Google Scholar 

  9. J. Li, H. Li, G.M. Zhan, L.Z. Zhang, ACC Chem. Res. 50 (2017) 112–121.

    Google Scholar 

  10. R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Nat. Mater. 11 (2012) 550–557.

    Google Scholar 

  11. K. Li, Y. Li, Y.M. Wang, J.J. Ge, C.P. Liu, W. Xing, Energy Environ. Sci. 11 (2018) 1232–1239.

    Google Scholar 

  12. Y.R. Zheng, P. Wu, M.R. Gao, X.L. Zhang, F.Y. Gao, H.X. Ju, R. Wu, Q. Gao, R. You, W.X. Huang, S.J. Liu, S.W. Hu, J. Zhu, Z. Li, S.H. Yu, Nat. Commun. 9 (2018) 2533.

    Google Scholar 

  13. Z.Y. Lu, L. Qian, Y. Tian, Y.P. Li, X.M. Sun, X. Duan, Chem. Commun. 52 (2016) 908–911.

    Google Scholar 

  14. X.Q. Huang, Z.P. Zhao, L. Cao, Y. Chen, E.B. Zhu, Z.Y. Lin, M.F. Li, A.M. Yan, A. Zettl, Y.M. Wang, X.F. Duan, T. Mueller, Y. Huang, Science 348 (2015) 1230–1234.

    Google Scholar 

  15. C. Chen, Y.J. Kang, Z.Y. Huo, Z.W. Zhu, W.Y. Huang, H.L.L. Xin, J.D. Snyder, D.G. Li, J.A. Herron, M. Mavrikakis, M.F. Chi, K.L. More, Y.D. Li, N.M. Markovic, G.A. Somorjai, P.D. Yang, V.R. Stamenkovic, Science 343 (2014) 1339–1343.

    Google Scholar 

  16. C.M. Zhao, Y. Wang, Z.J. Li, W.X. Chen, Q. Xu, D.S. He, D.S. Xi, Q.H. Zhang, T.W. Yuan, Y.T. Qu, J. Yang, F.Y. Zhou, Z.K. Yang, X.Q. Wang, J. Wang, J. Luo, Y.F. Li, H.H. Duan, Y.E. Wu, Y.D. Li, Joule 3 (2019) 584–594.

    Google Scholar 

  17. T.T. Zheng, K. Jiang, N. Ta, Y.F. Hu, J. Zeng, J.Z. Liu, H.T. Wang, Joule 3 (2019) 265–278.

    Google Scholar 

  18. D. Gao, R.M. Arán-Ais, H.S. Jeon, B.R. Cuenya, Nat. Catal. 2 (2019) 198–210.

    Google Scholar 

  19. D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, Adv. Mater. 29 (2017) 1604799.

    Google Scholar 

  20. Y. Gong, J. Wu, M. Kitano, J. Wang, T.N. Ye, J. Li, Y. Kobayashi, K. Kishida, H. Abe, Y. Niwa, H. Yang, T. Tada, H. Hosono, Nat. Catal. 1 (2018) 178–185.

    Google Scholar 

  21. Y.M. Liu, Y. Su, X. Quan, X.F. Fan, S. Chen, H.T. Yu, H.M. Zhao, Y.B. Zhang, J.J. Zhao, ACS Catal. 8 (2018) 1186–1191.

    Google Scholar 

  22. B. Zugic, L. Wang, C. Heine, D.N. Zakharov, B.A.J. Lechner, E.A. Stach, J. Biener, M. Salmeron, R.J. Madix, C.M. Friend, Nat. Mater. 16 (2017) 558–564.

    Google Scholar 

  23. X.Y. Lang, G.F. Han, B.B. Xiao, L. Gu, Z.Z. Yang, Z. Wen, Y.F. Zhu, M. Zhao, J.C. Li, Q. Jiang, Adv. Funct. Mater. 25 (2015) 230–237.

    Google Scholar 

  24. L.L. Zhang, Q.W. Chang, H.M. Chen, M.H. Shao, Nano Energy 29 (2016) 198–219.

    Google Scholar 

  25. F. Li, G.F. Han, H.J. Noh, I. Ahmad, I.Y. Jeon, J.B. Baek, Adv. Mater. 30 (2018) e1803676.

  26. J.B. Wu, H. Yang, Accounts Chem. Res. 46 (2013) 1848–1857.

    Google Scholar 

  27. C. Meng, T. Ling, T.Y. Ma, H. Wang, Z. Hu, Y. Zhou, J. Mao, X.W. Du, M. Jaroniec, S.Z. Qiao, Adv. Mater. 29 (2017) 1604607.

    Google Scholar 

  28. X.Q. Huang, E.B. Zhu, Y. Chen, Y.J. Li, C.Y. Chiu, Y.X. Xu, Z.Y. Lin, X.F. Duan, Y. Huang, Adv. Mater. 25 (2013) 2974–2979.

    Google Scholar 

  29. M.S. Faber, S. Jin, Energy Environ. Sci. 7 (2014) 3519–3542.

    Google Scholar 

  30. W.Q. Zhang, J. He, S.Y. Liu, W.X. Niu, P. Liu, Y. Zhao, F.J. Pang, W. Xi, M.W. Chen, W. Zhang, S.S. Pang, Y. Ding, Nanoscale 10 (2018) 8372–8376.

    Google Scholar 

  31. H.J. Qiu, H.T. Xu, L. Liu, Y. Wang, Nanoscale 7 (2015) 386–400.

    Google Scholar 

  32. W. Luc, F. Jiao, ACS Catal. 7 (2017) 5856–5861.

    Google Scholar 

  33. T.T.H. Hoang, S. Verma, S. Ma, T.T. Fister, J. Timoshenko, A.I. Frenkel, P.J.A. Kenis, A.A. Gewirth, J. Am. Chem. Soc. 140 (2018) 5791–5797.

    Google Scholar 

  34. Z.H. Zhang, Y. Wang, Z. Qi, W.H. Zhang, J.Y. Qin, J. Frenzel, J. Phys. Chem. C 113 (2009) 12629–12636.

    Google Scholar 

  35. H.J. Qiu, J.L. Kang, P. Liu, A. Hirata, T. Fujita, M.W. Chen, J. Power Sources 247 (2014) 896–905.

    Google Scholar 

  36. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrow, K. Sieradzki, Nature 410 (2001) 450–453.

    Google Scholar 

  37. X.Y. Lang, L.Y. Chen, P.F. Guan, T. Fujita, M.W. Chen, Appl. Phys. Lett. 94 (2009) 213109.

    Google Scholar 

  38. L.H. Qian, M.W. Chen, Appl. Phys. Lett. 91 (2007) 083105.

    Google Scholar 

  39. K.H. Wang, K.L. Sun, T.P. Yu, X. Liu, G.X. Wang, L.H. Jiang. G.W. Xie, J. Mater. Chem. A 7 (2019) 2518–2523.

  40. W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.Y. Li, Z.D. Cui, X.J. Yang, A. Inoue, Sci. Rep. 5 (2015) 18125.

    Google Scholar 

  41. Y.Y. Ji, L. Yang, X. Ren, G.W. Cui, X.L. Xiong, X.P. Sun, ACS Sustainable Chem. Eng. 6 (2018) 11186–11189.

    Google Scholar 

  42. C. Coaty, H.Y. Zhou, H.Y. Liu, P.D. Liu, ACS Nano 12 (2018) 432–440.

    Google Scholar 

  43. Q. Zheng, X. Shen, K. Sokolowski-Tinten, R.K. Li, Z. Chen, M.Z. Mo, Z.L. Wang, S.P. Weathersby, J. Yang, M.W. Chen, X.J. Wang, J. Phys. Chem. C 122 (2018) 16368–16373.

    Google Scholar 

  44. J.L. Huang, Z.B. He, Y.S. Liu, L. Liu, X.S. He, T. Wang, Y. Yi, C.P. Xie, K. Du, Appl. Surf. Sci. 478 (2019) 793–801.

    Google Scholar 

  45. H.A. Hansen, J.B. Varley, A.A. Peterson, J.K. Norskov, J. Phys. Chem. Lett. 4 (2013) 388–392.

    Google Scholar 

  46. T. Deronzier, F. Morfin, M. Lomello, J.L. Rousset, J. Catal. 311 (2014) 221–229.

    Google Scholar 

  47. C.A.R. Chapman, H. Chen, M. Stamou, J. Biener, M.M. Biener, P.J. Lein, E. Seker, ACS Appl. Mater. Interf. 7 (2015) 7093–7100.

    Google Scholar 

  48. D.W. Li, Y. Zhu, H. Wang, Y. Ding, Sci. Rep. 3 (2013) 3015.

    Google Scholar 

  49. M.U.B. Christiansen, N. Seselj, C. Engelbrekt, M. Wagner, F.N. Stappen, J. Zhang, J. Mater. Chem. A 6 (2018) 556–564.

    Google Scholar 

  50. A.A. El-Zoka, B. Langelier, A. Korinek, G.A. Botton, R.C. Newman, Nanoscale 10 (2018) 4904–4912.

    Google Scholar 

  51. H.J. Qiu, X. Shen, J.Q. Wang, A. Hirata, T. Fujita, Y. Wang, M.W.Chen, ACS Catal. 5 (2015) 3779–3785.

    Google Scholar 

  52. R.J. Cui, L. Mei, G.J. Han, J.Y. Chen, G.H. Zhang, Y. Quan, N. Gu, L. Zhang, Y. Fang, B. Qian, X.F. Jiang, Z.D. Han, Sci. Rep. 7 (2017) 41826.

    Google Scholar 

  53. J.Z. Sun, J. Shi, J.L. Xu, X.T. Chen, Z.H. Zhang, Z.Q. Peng, J. Power Sources 279 (2015) 334–344.

    Google Scholar 

  54. X.T. Chen, C.H. Si, Y.L. Gao, J. Frenzel, J.Z. Sun, G. Eggeler, Z.H. Zhang, J. Power Sources 273 (2015) 324–332.

    Google Scholar 

  55. X.T. Chen, C.H. Si, Y. Wang, Y. Ding, Z.H. Zhang, Nano Res. 9 (2016) 1831–1843.

    Google Scholar 

  56. H.J. Qiu, G. Fang, Y. Wen, P. Liu, G. Xie, X. Liu, S. Sun, J. Mater. Chem. A 7 (2019) 6499–6506.

    Google Scholar 

  57. L.Y. Chen, H. Guo, T. Fujita, A. Hirata, W. Zhang, A. Inoue, M.W. Chen, Adv. Funct. Mater. 21 (2011) 4364–4370.

    Google Scholar 

  58. Y. Zhao, M. Luo, S.F. Chu, M. Peng, B.Y. Liu, Q.L. Wu, P. Liu, F.M.F. de Groot, Y.W. Tan, Nano Energy 59 (2019) 146–153.

    Google Scholar 

  59. H. Ji, X.G. Wang, C.C. Zhao, C. Zhang, J.L. Xu, Z.H. Zhang, CrystEngComm 13 (2011) 2617–2628.

    Google Scholar 

  60. R. Morrish, A.J. Muscat, Chem. Mater. 21 (2009) 3865–3870.

    Google Scholar 

  61. Z.Q. Li, X. Lu, Z.X. Qin, Int. J. Electrochem. Sci. 8 (2013) 3564–3571.

    Google Scholar 

  62. C.X. Xu, Y.Y. Li, F. Tian, Y. Ding, ChemPhyscChem 11 (2010) 3320–3328.

    Google Scholar 

  63. M. Zhang, A.M. Jore Junior, S.J. Pang, T. Zhang, A.R. Yavari, Scripta Mater. 100 (2015) 21–23.

  64. T.T. Song, Y.L. Gao, Z.H. Zhang, Q.J. Zhai, CrystEngComm 13 (2011) 7058–7067.

    Google Scholar 

  65. H.J. Qiu, Z.H. Zhang, X.R. Huang, Y.B. Qu, ChemPhysChem 12 (2011) 2118–2123.

    Google Scholar 

  66. T.T.H. Hoang, S. Ma, J.I. Gold, P.J.A. Kenis, A.A. Gewirth, ACS Catal. 7 (2017) 3313–3321.

    Google Scholar 

  67. J.H. Kim, D.H. Youn, K. Kawashima, J. Lin, H. Lim, C.B. Mullins, Appl. Catal. B Environ. 225 (2018) 1–7.

    Google Scholar 

  68. Z. Lu, C. Li, J.H. Han, F. Zhang, P. Liu, H. Wang, Z.L. Wang, C. Cheng, L.H. Chen, A. Hirata, T. Fujita, J. Erlebacher, M. Chen, Nat. Commun. 9 (2018) 276.

    Google Scholar 

  69. H. Gao, J.Z. Niu, C. Zhang, Z.Q. Peng, Z.H. Zhang, ACS Nano 12 (2018) 3568–3577.

    Google Scholar 

  70. D. Peckus, A. Chauvin, T. Tamulevičius, M. Juodėnas, J. Ding, C.H. Choi, A.-A. El Mel, P.Y. Tessier, S. Tamulevicius, J. Phys. D Appl. Phys. 52 (2019) 225103.

    Google Scholar 

  71. X. Wang, K. Ye, Y.Y. Gao, H.Y. Zhang, K. Cheng, X. Xiao, G.L. Wang, D.X. Cao, J. Power Sources 303 (2016) 278–286.

    Google Scholar 

  72. Y. Wang, K.B. Yin, L.F. Lv, T.Y. Kou, C. Zhang, J. Zhang, H. Gao, Z.H. Zhang, J. Mater. Chem. A 5 (2017) 23651–23661.

    Google Scholar 

  73. H.J. Qiu, J.J. Gao, F.K. Chiang, Y.R. Wen, A.Y. Yao, P. Du, G. Fang, J.Q. Wang, X.J. Liu, J. Mater. Chem. A 6 (2018) 12541–12550.

    Google Scholar 

  74. G.F. Han, L. Gu, X.Y. Lang, B.B. Xiao, Z.Z. Yang, Z. Wen, Q. Jiang, ACS Appl. Mater. Interf. 8 (2016) 32910–32917.

    Google Scholar 

  75. T. Cheng, X.Y. Lang, G.F. Han, R.Q. Yao, Z. Wen, Q. Jiang, J. Mater. Chem. A 4 (2016) 18878–18884.

    Google Scholar 

  76. R.Q. Yao, L.P. Han, X.Y. Lang, T. Cheng, Z. Wen, G. Liu, Q. Jiang, Int. J. Hydrogen Energy 43 (2018) 19947–19954.

    Google Scholar 

  77. J.S. Sun, Z. Wen, L.P. Han, Z.W. Chen, X.Y. Lang, Q. Jiang, Adv. Funct. Mater. 28 (2018) 1706127.

    Google Scholar 

  78. X.B. Ge, L.Y. Chen, J.L. Kang, T. Fujita, A. Hirata, W. Zhang, J.H. Jiang, M.W. Chen, Adv. Funct. Mater. 23 (2013) 4156–4162.

    Google Scholar 

  79. H.J. Qiu, H.T. Xu, X. Li, J.Q. Wang, Y. Wang, J. Mater. Chem. A 3 (2015) 7939–7944.

    Google Scholar 

  80. M. Hakamada, M. Mabuchi, J. Alloy. Compd. 479 (2009) 326–329.

    Google Scholar 

  81. X.G. Wang, W.M. Wang, Z. Qi, C.C. Zhao, H. Ji, Z.H. Zhang, Electrochem. Commun. 11 (2009) 1896–1899.

    Google Scholar 

  82. C.X. Xu, Y.Q. Liu, H. Zhang, H.R. Geng, Chem. Asian J. 8 (2013) 2721–2728.

  83. C.X. Xu, A.H. Liu, H.J. Qiu, Y.Q. Liu, Electrochem. Commun. 13 (2011) 766–769.

    Google Scholar 

  84. F.J. Pang, Z.F. Wang, K. Zhang, W.Q. Zhang, C.X. Guo, Y. Ding, Nano Energy 58 (2019) 834–841.

    Google Scholar 

  85. Y. Li, C. Ji, Y.C. Chi, Z.H. Dan, H.F. Zhang, F.X. Qin, Acta Metall. Sin. (Engl. Lett.) 32 (2018) 63–73.

  86. Y. Ding, J. Erlebacher, J. Am. Chem. Soc. 125 (2003) 7772–7773.

  87. X.F. Xing, D.Q. Han, Y.F. Wu, Y. Guan, N. Bao, X.H. Xu, Mater. Lett. 71 (2012) 108–110.

    Google Scholar 

  88. Z. Qi, J. Weissmuller, ACS Nano 7 (2013) 5948–5954.

    Google Scholar 

  89. Q.Y. Yu, S. Yin, J. Zhang, H.M. Yin, Electrochim. Acta 298 (2019) 599–608.

    Google Scholar 

  90. Y. Xue, F. Scaglione, P. Rizzi, L. Battezzati, P. Denis, H.J. Fecht, Appl. Surf. Sci. 476 (2019) 412–417.

    Google Scholar 

  91. Y. Wang, W. Huang, C.H. Si, J. Zhang, X.J. Yan, C.H. Jin, Y. Ding, Z.H. Zhang, Nano Res. 9 (2016) 3781–3794.

    Google Scholar 

  92. M.M. Tian, S. Shi, Y.L. Shen, H.M. Yin, Electrochim. Acta 293 (2019) 390–398.

    Google Scholar 

  93. Y.H. Huan, J.P. Shi, X.L. Zou, Y. Gong, Z.P. Zhang, M.H. Li, L.Y. Zhao, R.Z. Xu, S.L. Jiang, X.B. Zhou, M. Hong, C.Y. Xie, H. Li, X.Y. Lang, Q. Zhang, L. Gu, X.Q. Yan, Y.F. Zhang, Adv. Mater. 30 (2018) e1705916.

    Google Scholar 

  94. Y.T. Kim, P.P. Lopes, S.A. Park, A.Y. Lee, J. Lim, H. Lee, S. Back, Y. Jung, N. Danilovic, V. Stamenkovic, J. Erlebacher, J. Snyder, N.M. Markovic, Nat. Commun. 8 (2017) 1449.

    Google Scholar 

  95. C.Z. Wang, W.S. Xu, Z.X. Qin, S. Mintova, Catal. Commun. 119 (2019) 39–41.

    Google Scholar 

  96. L. Gan, M. Heggen, R. O’Malley, B. Theobald, P. Strasser, Nano Lett. 13 (2013) 1131–1138.

    Google Scholar 

  97. B. Geboes, J. Ustarroz, K. Sentosun, H. Vanrompay, A. Hubin, S. Bals, T. Breugelmans, ACS Catal. 6 (2016) 5856–5864.

    Google Scholar 

  98. H.E.M. Hussein, H. Amari, J.V. Macpherson, ACS Catal. 7 (2017) 7388–7398.

    Google Scholar 

  99. Y.Y. Wang, D.D. Liu, Z.J. Liu, C. Xie, J. Huo, S.Y. Wang, Chem. Commun. 52 (2016) 12614–12617.

    Google Scholar 

  100. X.X. Yang, W.C. Xu, S. Cao, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, Z.Y. Li, S.L. Wu, A. Inoue, L.Y. Chen, Appl. Catal. B Environ. 246 (2019) 156–165.

    Google Scholar 

  101. Y.W. Tan, H. Wang, P. Liu, C. Cheng, F. Zhu, A. Hirata, M.W. Chen, Adv. Mater. 28 (2016) 2951–2955.

    Google Scholar 

  102. Y.Y. Ji, L. Yang, X. Ren, G.W. Cui, X.L. Xiong, X.P. Sun, ACS Sustain. Chem. Eng. 6 (2018) 11186–11189.

    Google Scholar 

  103. Y.M. Shi, B. Zhang, Chem. Soc. Rev. 45 (2016) 1529–1541.

    Google Scholar 

  104. W.X. Zhu, C. Tang, D.N. Liu, J.L. Wang, A.M. Asiri, X.P. Sun, J. Mater. Chem. A 4 (2016) 7169–7173.

    Google Scholar 

  105. Y.W. Tan, H. Wang, P. Liu, Y.H. Shen, C. Cheng, A. Hirata, T. Fujita, Z. Tang, M.W. Chen, Energy Environ. Sci. 9 (2016) 2257–2261.

    Google Scholar 

  106. W.C. Xu, S.L. Zhu, Y.Q. Liang, Z.D. Cui, X.J. Yang, A. Inoue, J. Mater. Chem. A 6 (2018) 5574–5579.

    Google Scholar 

  107. M. Zeng, H. Wang, C. Zhao, J.K. Wei, K. Qi, W.L. Wang, X.D. Bai, ChemCatChem 8 (2016) 708–712.

    Google Scholar 

  108. P.L. Zhang, M. Wang, Y. Yang, T.Y. Yao, H.X. Han, L.C. Sun, Nano Energy 19 (2016) 98–107.

    Google Scholar 

  109. C. Adan, F.J. Perez-Alonso, S. Rojas, M.A. Pena, J.L.G. Fierro, Int. J. Hydrogen Energy 37 (2012) 14984–14991.

    Google Scholar 

  110. Z.L. Schaefer, X. Ke, P. Schiffer, R.E. Schaak, J. Phys. Chem. C 112 (2008) 19846–19851.

    Google Scholar 

  111. X.S. Xu, Y.X. Deng, M.H. Gu, B.T. Sun, Z.Q. Liang, Y.J. Xue, Y.C. Guo, J. Tian, H.Z. Cui, Appl. Surf. Sci. 470 (2019) 591–595.

    Google Scholar 

  112. L.X. Chen, Z.W. Chen, Y. Wang, C.C. Yang, Q. Jiang, ACS Catal. 8 (2018) 8107–8114.

    Google Scholar 

  113. Z.Y. Lu, H.C. Zhang, W. Zhu, X.Y. Yu, Y. Kuang, Z. Chang, X.D. Lei, X.M. Sun, Chem. Commun. 49 (2013) 7516–7518.

    Google Scholar 

  114. H.T. Wang, C. Tsai, D.S. Kong, K.R. Chan, F. Abild-Pedersen, J. Norskov, Y. Cui, Nano Res. 8 (2015) 566–575.

    Google Scholar 

  115. R. Miao, B. Dutta, S. Sahoo, J. He, W. Zhong, S.A. Cetegen, T. Jiang, S.P. Alpay, S.L. Suib, J. Am. Chem. Soc. 139 (2017) 13604–13607.

    Google Scholar 

  116. M. Wang, W.J. Zhang, F.F. Zhang, Z.H. Zhang, B. Tang, J.P. Li, X.G. Wang, ACS Catal. 9 (2019) 1489–1502.

    Google Scholar 

Download references

Acknowledgements

We wish to thank the National Natural Science Foundation of China (No. 51631004), JLU Science and Technology Innovative Research Team (No. 2017TD-09), the fund of “World-class Universities and World-class Disciplines” and the computing resources of High Performance Computing Centers of Jilin University and Jinan, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-you Lang or Qing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Rq., Lang, Xy. & Jiang, Q. Recent advances of nanoporous metal-based catalyst: synthesis, application and perspectives. J. Iron Steel Res. Int. 26, 779–795 (2019). https://doi.org/10.1007/s42243-019-00298-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00298-8

Keywords

Navigation