Skip to main content
Log in

Comparative cyclic oxidation behaviour and effect of oxides on hardness of wear resistance coating alloys T-401 and T-900

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The investigated alloys are newly developed Tribaloy alloys with enhanced crack and oxidation resistance over the traditional Tribaloy alloys. The cyclic oxidation performance and effects of complex oxides on the hardness of cobalt-based Tribaloy alloys T-401 (hypoeutectic) and T-900 (hypereutectic) were assessed. The results showed that T-900 alloy has a lower oxidation rate as compared to T-401 alloy at 800 and 1000 °C, which attributed to the formation of dense continuous Cr2O3 layer with an upper thinner continuous layer of CoCr2O4 and NiCr2O4 oxides. At 1000 °C, T-401 alloy exhibited poor oxidation resistance due to severe spallation after 3 cycles (45 h). After oxidation, T-900 alloy exhibits 98% and 18% lower mass gain than T-401 alloy at 1000 and 800 °C, respectively. For T-900 alloy, relationship between mass gain and thickness of oxide layer revealed that mass will increase 0.162 mg/cm2 for every 1-µm increase in the oxides thickness. Internal SiO2 oxide was observed at 800 and 1000 °C for both alloys. However, the extent of internal Si oxides increased with increasing oxidation temperature from 800 to 1000 °C. Consequently, internal oxidation of Si led to the formation of Laves phase-depleted region near oxide/alloy interface in T-900 alloy at 1000 °C. Thus, hardness of T-900 alloy decreased from 618 to 392 HV beneath the oxide/alloy interface at 1000 °C, whereas hardness of T-900 and T-401 alloys after cyclic oxidation test at 800 °C increased from 618 to 855 and 519 to 685 HV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Bolelli, L. Lusvarghi, J. Therm. Spray Technol. 15 (2006) 802–810.

    Article  Google Scholar 

  2. G. Bouquet, B. Dubois, Scripta Metall. 12 (1978) 1079–1081.

    Article  Google Scholar 

  3. A. Halstead, R.D. Rawlings, Mater. Sci. 18 (1984) 491–500.

    Google Scholar 

  4. K. Jiang, R. Liu, K. Chen, M. Liang, Wear 307 (2013) 22–27.

    Article  Google Scholar 

  5. M.J. Tobar, J.M. Amado, C. Álvarez, A. García, A. Varela, A. Yáñez, Surf. Coat. Technol. 202 (2008) 2297–2301.

    Article  Google Scholar 

  6. R.D. Schmidt, D.P. Ferriss, Wear 32 (1975) 279–289.

    Article  Google Scholar 

  7. M.X. Yao, J.B.C. Wu, S. Yick, Y. Xie, R. Liu, Mater. Sci. Eng. A 435–436 (2006) 78–83.

    Article  Google Scholar 

  8. S. Nsoesie, R. Liu, K. Jiang, M. Liang, Int. J. Mater. Sci. Mech. Eng. 2 (2013) No. 3, 48–56.

    Google Scholar 

  9. H.E. Evans, D.A. Hilton, R.A. Holm, S.J. Webster, Oxid. Met. 19 (1983) 1–18.

    Article  Google Scholar 

  10. A. Halstead, R.D. Rawlings, J. Mater. Sci. 20 (1985) 1248–1256.

    Article  Google Scholar 

  11. P.Y. Hou, J. Am. Ceram. Soc. 86 (2003) 660–668.

    Article  Google Scholar 

  12. P.Y. Hou, Chin. Soc. Corros. Protect. 29 (2009) 277–285.

    Google Scholar 

  13. P.Y. Hou, J. Stringer, Mater. Sci. Eng. A 202 (1995) 1–10.

    Article  Google Scholar 

  14. R. Prescott, M.J. Graham, Oxid. Met. 38 (1992) 233–254.

    Article  Google Scholar 

  15. Y. Zhang, Z. Yang, C. Zhang, H. Lan, Chin. J. Aeronaut. 23 (2010) 370–376.

    Article  Google Scholar 

  16. X.H. Zhang, C. Zhang, Y.D. Zhang, S. Salam, H.F. Wang, Z.G. Yang, Corros. Sci. 88 (2014) 405–415.

    Article  Google Scholar 

  17. Y.D. Zhang, C. Zhang, H. Lan, P.Y. Hou, Z.G. Yang, Corros. Sci. 53 (2011) 1035–1043.

    Article  Google Scholar 

  18. I.A. Inman, P.S. Datta, H.L. Du, K.C. Kübel, P.D. Wood, F.T. Mahi, B. Cottis, High temperature tribocorrosion, Elsevier Science, UK, 2010, pp. 331–398.

    Google Scholar 

  19. F.H. Stott, G.C. Wood, J. Stringer, Oxid. Met. 44 (1995) 113–145.

    Article  Google Scholar 

  20. D.L. Douglass, Oxid. Met. 44 (1995) 81–111.

    Article  Google Scholar 

  21. H. Guleryuz, H. Cimenoglu, Surf. Coat. Technol. 192 (2005) 164–170.

    Article  Google Scholar 

  22. F. Borgioli, E. Galvanetto, F.P. Galliano, T. Bacci, Surf. Coat. Technol. 141 (2001) 103–107.

    Article  Google Scholar 

  23. D.B. Wei, P.Z. Zhang, Z.J. Yao, J.T. Zhou, X.F. Wei, P. Zhou, Appl. Surf. Sci. 261 (2012) 800–806.

    Article  Google Scholar 

  24. E. Airiskallio, E. Nurmi, M.H. Heinonen, I.J. Väyrynen, K. Kokko, M. Ropo, M.P.J. Punkkinen, H. Pitkänen, M. Alatalo, J. Kollár, B. Johansson, L. Vitos, Corros. Sci. 52 (2010) 3394–3404.

    Article  Google Scholar 

  25. H. Buscail, F. Riffard, C. Issartel, S. Perrier, Corros. Eng. Sci. Technol. 47 (2012) 404–410.

    Article  Google Scholar 

  26. B.A. Pint, Oxid. Met. 48 (1997) 303–328.

    Article  Google Scholar 

  27. J.C. Pivin, D. Delaunay, C. Roques-Carmes, A.M. Huntz, P. Lacombe, Corros. Sci. 20 (1980) 351–373.

    Article  Google Scholar 

  28. A. Ul-Hamid, Corros. Sci. 46 (2004) 27–36.

    Article  Google Scholar 

  29. X. Pang, K. Gao, H. Yang, L. Qiao, Y. Wang, A.A. Volinsky, Adv. Eng. Mater. 9 (2007) 594–599.

    Article  Google Scholar 

  30. S. Han, D.J. Young, Oxid. Met. 55 (2001) 223–242.

    Article  Google Scholar 

  31. C.A. Snavely, C.L. Faust, J. Electrochem. Soc. 97 (1950) 99–108.

    Article  Google Scholar 

  32. X.G. Zheng, D.J. Young, Mater. Sci. Forum 251–254 (1997) 567–574.

    Article  Google Scholar 

  33. J.C. Salabura, D. Monceau, Mater. Sci. Forum 461–464 (2004) 689–696.

    Article  Google Scholar 

  34. L.J. Zhou, F. Wang, C. Yang, W.W. Zhang, Z.Y. Xiao, Y.Y. Li, Mater. Des. 78 (2015) 25–32.

    Article  Google Scholar 

  35. E.M. do Nascimento, L.M. do Amaral, A.S.C.M. D'Oliveira, Surf. Coat. Technol. 332 (2017) 408–413.

    Article  Google Scholar 

  36. S.X. Liang, L.X. Yin, J.X. Li, M.Z. Ma, R.P. Liu, Mater. Des. 86 (2015) 458–463.

    Article  Google Scholar 

  37. V. Pawar, C. Weaver, S. Jani, Appl. Surf. Sci. 257 (2011) 6118–6124.

    Article  Google Scholar 

  38. R. Liu, J. Yao, Q. Zhang, M.X. Yao, R. Collier, J. Eng. Mater. Technol. 138 (2016) 041017.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Tsinghua University Initiative Scientific Research Program and National Magnetic Confinement Fusion Energy Research Project of China (Grant No. 2015GB118001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-gang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, A., Liang, Y., Bidabadi, M.H.S. et al. Comparative cyclic oxidation behaviour and effect of oxides on hardness of wear resistance coating alloys T-401 and T-900. J. Iron Steel Res. Int. 26, 1069–1079 (2019). https://doi.org/10.1007/s42243-019-00258-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00258-2

Keywords

Navigation