Skip to main content
Log in

Spheroid construction strategies and application in 3D bioprinting

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Tissue engineering has been striving toward designing and producing natural and functional human tissues. Cells are the fundamental building blocks of tissues. Compared with traditional two-dimensional cultured cells, cell spheres are three-dimensional (3D) structures that can naturally form complex cell–cell and cell–matrix interactions. This structure is close to the natural environment of cells in living organisms. In addition to being used in disease modeling and drug screening, spheroids have significant potential in tissue regeneration. The 3D bioprinting is an advanced biofabrication technique. It accurately deposits bioinks into predesigned 3D shapes to create complex tissue structures. Although 3D bioprinting is efficient, the time required for cells to develop into complex tissue structures can be lengthy. The 3D bioprinting of spheroids significantly reduces the time required for their development into large tissues/organs during later cultivation stages by printing them with high cell density. Combining spheroid fabrication and bioprinting technology should provide a new solution to many problems in regenerative medicine. This paper systematically elaborates and analyzes the spheroid fabrication methods and 3D bioprinting strategies by introducing spheroids as building blocks. Finally, we present the primary challenges faced by spheroid fabrication and 3D bioprinting with future requirements and some recommendations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reproduced from Ref. [95], Copyright 2019, with permission from Society for Laboratory Automation and Screening

Fig. 4

Reproduced from Ref. [97], Copyright 2021, with permission from the authors, licensed under the Creative Commons Attribution 4.0 license

Fig. 5

Reproduced from Ref. [99], Copyright 2018, with permission from WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. d The spheroids are picked from the cell media by a glass pipette, where the required back pressure is set to lift the spheroids. e, e1 A schematic showing critical parameters during bioprinting; e2e8 spheroids are printed at the desired locations. Reproduced from Ref. [100], Copyright 2020, with permission from the authors, licensed under CC BY-NC

Fig. 6

Reproduced from Ref. [138], Copyright 2013, with permission from Acta Materialia Inc. c, c1 The cells mixing with magnetic nanoparticles were then printed for 15 min by placing the plate on top of a 96-well magnetic drive; c2 spheroid contraction over 6 h as cells rearrange and compact (nuclei blue); c3 the mobile device based imaging system. Reproduced from Ref. [101], Copyright 2015, with permission from the authors, licensed under a Creative Commons Attribution 4.0 International License

References

  1. Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3(9–10):1172–1184. https://doi.org/10.1002/biot.200700228

    Article  Google Scholar 

  2. Laschke MW, Menger MD (2017) Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol 35(2):133–144. https://doi.org/10.1016/j.tibtech.2016.08.004

    Article  Google Scholar 

  3. Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33. https://doi.org/10.3389/fmolb.2020.00033

    Article  Google Scholar 

  4. Costa EC, Moreira AF, de Melo-Diogo D et al (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34(8):1427–1441. https://doi.org/10.1016/j.biotechadv.2016.11.002

    Article  Google Scholar 

  5. Fennema E, Rivron N, Rouwkema J et al (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115. https://doi.org/10.1016/j.tibtech.2012.12.003

    Article  Google Scholar 

  6. Weiswald LB, Bellet D, Dangles-Marie V (2015) Spherical cancer models in tumor biology. Neoplasia 17(1):1–15. https://doi.org/10.1016/j.neo.2014.12.004

    Article  Google Scholar 

  7. Li M, Song XE, Jin S et al (2021) 3D tumor model biofabrication. Bio-Des Manuf 4(3):526–540. https://doi.org/10.1007/s42242-021-00134-7

    Article  Google Scholar 

  8. Langhans SA (2018) Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front Pharmacol 9:6. https://doi.org/10.3389/fphar.2018.00006

    Article  Google Scholar 

  9. Breslin S, O’Driscoll L (2013) Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today 18(5–6):240–249. https://doi.org/10.1016/j.drudis.2012.10.003

    Article  Google Scholar 

  10. Kunz-Schughart LA, Freyer JP, Hofstaedter F et al (2004) The use of 3-D cultures for high-throughput screening: the multicellular spheroid model. SLAS Discov 9(4):273–285. https://doi.org/10.1177/1087057104265040

    Article  Google Scholar 

  11. Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30(12):2164–2174. https://doi.org/10.1016/j.biomaterials.2008.12.084

    Article  Google Scholar 

  12. Hospodiuk M, Dey M, Sosnoski D et al (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35(2):217–239. https://doi.org/10.1016/j.biotechadv.2016.12.006

    Article  Google Scholar 

  13. Katt ME, Placone AL, Wong AD et al (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 4:12. https://doi.org/10.3389/fbioe.2016.00012

    Article  Google Scholar 

  14. Hoarau-Véchot J, Rafii A, Touboul C et al (2018) Halfway between 2D and animal models: are 3D cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci 19(1):181. https://doi.org/10.3390/ijms19010181

    Article  Google Scholar 

  15. Hirschhaeuser F, Menne H, Dittfeld C et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012

    Article  Google Scholar 

  16. Barbosa MAG, Xavier CPR, Pereira RF et al (2022) 3D cell culture models as recapitulators of the tumor microenvironment for the screening of anti-cancer drugs. Cancers 14(1):190. https://doi.org/10.3390/cancers14010190

    Article  Google Scholar 

  17. Zhou ZZ, He JY, Pang Y et al (2023) Reconstruction of tumor microenvironment via in vitro three-dimensional models. Biofabrication 15(3):032002. https://doi.org/10.1088/1758-5090/acd1b8

    Article  Google Scholar 

  18. Liu J, Sun L, Xu W et al (2019) Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym 207:297–316. https://doi.org/10.1016/j.carbpol.2018.11.077

    Article  Google Scholar 

  19. Yan Q, Dong H, Su J et al (2018) A review of 3D printing technology for medical applications. Engineering 4(5):729–742. https://doi.org/10.1016/j.eng.2018.07.021

    Article  Google Scholar 

  20. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  21. Ng WL, Chua CK, Shen YF (2019) Print me an organ! Why we are not there yet. Prog Polym Sci 97:101145. https://doi.org/10.1016/j.progpolymsci.2019.101145

    Article  Google Scholar 

  22. Gao C, Lu CX, Jian ZA et al (2021) 3D bioprinting for fabricating artificial skin tissue. Colloid Surf B Biointerfaces 208:112041. https://doi.org/10.1016/j.colsurfb.2021.112041

    Article  Google Scholar 

  23. Wang Z, Kapadia W, Li CD et al (2021) Tissue-specific engineering: 3D bioprinting in regenerative medicine. J Contr Rel 329:237–256. https://doi.org/10.1016/j.jconrel.2020.11.044

    Article  Google Scholar 

  24. Mandrycky C, Wang ZJ, Kim K et al (2018) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011

    Article  Google Scholar 

  25. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  Google Scholar 

  26. Hölzl K, Lin SM, Tytgat L et al (2016) Ovsianikov, bioink properties before, during and after 3D bioprinting. Biofabrication 8(3):032002. https://doi.org/10.1088/1758-5090/8/3/032002

    Article  Google Scholar 

  27. Zhang Y, Wang B, Hu JC et al (2021) 3D composite bioprinting for fabrication of artificial biological tissues. Int J Bioprint 7(1):299. https://doi.org/10.18063/ijb.v7i1.299

    Article  Google Scholar 

  28. Atala A, Kasper FK, Mikos AG (2012) Engineering complex tissues. Sci Transl Med 4(160):160rv12. https://doi.org/10.1126/scitranslmed.3004890

    Article  Google Scholar 

  29. Tamayol A, Akbari M, Annabi N et al (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687. https://doi.org/10.1016/j.biotechadv.2012.11.007

    Article  Google Scholar 

  30. Zhou J, Tian Z, Tian QY et al (2021) 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater 6(6):1711–1726. https://doi.org/10.1016/j.bioactmat.2020.11.027

    Article  Google Scholar 

  31. Weng T, Zhang W, Xia Y et al (2021) 3D bioprinting for skin tissue engineering: current status and perspectives. J Tissue Eng 12:20417314211028576. https://doi.org/10.1177/20417314211028574

    Article  Google Scholar 

  32. Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23(20):4095–4103. https://doi.org/10.1016/S0142-9612(02)00148-5

    Article  Google Scholar 

  33. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  Google Scholar 

  34. Lee JM, Yeong WY (2016) Design and printing strategies in 3D bioprinting of cell-hydrogels: a review. Adv Healthc Mater 5(22):2856–2865. https://doi.org/10.1002/adhm.201600435

    Article  Google Scholar 

  35. Bendtsen ST, Quinnell SP, Wei M (2017) Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A 105(5):1457–1468. https://doi.org/10.1002/jbm.a.36036

    Article  Google Scholar 

  36. Ying GL, Jiang N, Maharjan S et al (2018) Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater 30(50):1805460. https://doi.org/10.1002/adma.201805460

    Article  Google Scholar 

  37. Hutmacher DW, Schantz JT, Lam CXF et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1(4):245–260. https://doi.org/10.1002/term.24

    Article  Google Scholar 

  38. Shuai CJ, Yang WJ, Feng P et al (2021) Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact Mater 6(2):490–502. https://doi.org/10.1016/j.bioactmat.2020.09.001

    Article  Google Scholar 

  39. Yin S, Zhang WJ, Zhang ZY et al (2019) Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv Healthc Mater 8(10):1801433. https://doi.org/10.1002/adhm.201801433

    Article  Google Scholar 

  40. Gao C, Lu CX, Qiao H et al (2022) Strategies for vascularized skin models in vitro. Biomater Sci 10(17):4724–4739. https://doi.org/10.1039/D2BM00784C

    Article  Google Scholar 

  41. Sekine H, Shimizu T, Sakaguchi K et al (2013) In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 4(1):1399. https://doi.org/10.1038/ncomms2406

    Article  Google Scholar 

  42. Guo BL, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. Sci China Chem 57(4):490–500. https://doi.org/10.1007/s11426-014-5086-y

    Article  Google Scholar 

  43. Bresciani G, Hofland LJ, Dogan F et al (2019) Evaluation of spheroid 3D culture methods to study a pancreatic neuroendocrine neoplasm cell line. Front Endocrinol 10:682. https://doi.org/10.3389/fendo.2019.00682

    Article  Google Scholar 

  44. Decarli MC, Amaral R, Santos DPD et al (2021) Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications. Biofabrication 13(3):32002. https://doi.org/10.1088/1758-5090/abe6f2

    Article  Google Scholar 

  45. Shao CM, Chi JJ, Zhang H et al (2020) Development of cell spheroids by advanced technologies. Adv Mater Technol 5(9):2000183. https://doi.org/10.1002/admt.202000183

    Article  Google Scholar 

  46. Liu D, Chen SX, Naing MW (2021) A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol Bioeng 118(2):542–554. https://doi.org/10.1002/bit.27620

    Article  Google Scholar 

  47. Ward JP, King JR (2003) Mathematical modelling of drug transport in tumour multicell spheroids and monolayer cultures. Math Biosci 181(2):177–207. https://doi.org/10.1016/S0025-5564(02)00148-7

    Article  MathSciNet  Google Scholar 

  48. Lin B, Miao Y, Wang J et al (2016) Surface tension guided hanging-drop: producing controllable 3D spheroid of high-passaged human dermal papilla cells and forming inductive microtissues for hair-follicle regeneration. ACS Appl Mater Interfaces 8(9):5906–5916. https://doi.org/10.1021/acsami.6b00202

    Article  Google Scholar 

  49. Damman R, Lucini Paioni A, Xenaki KT et al (2020) Development of in vitro-grown spheroids as a 3D tumor model system for solid-state NMR spectroscopy. J Biomol NMR 74(8–9):401–412. https://doi.org/10.1007/s10858-020-00328-8

    Article  Google Scholar 

  50. Tung YC, Hsiao AY, Allen SG et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478. https://doi.org/10.1039/C0AN00609B

    Article  Google Scholar 

  51. Hsiao AY, Tung YC, Kuo CH et al (2012) Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices 14(2):313–323. https://doi.org/10.1007/s10544-011-9608-5

    Article  Google Scholar 

  52. Frey O, Misun PM, Fluri DA et al (2014) Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis. Nat Commun 5(1):4250. https://doi.org/10.1038/ncomms5250

    Article  Google Scholar 

  53. Hookway TA, Butts JC, Lee E et al (2016) Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny. Methods 101:11–20. https://doi.org/10.1016/j.ymeth.2015.11.027

    Article  Google Scholar 

  54. Shin HS, Kook YM, Hong HJ et al (2016) Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Acta Biomater 45:121–132. https://doi.org/10.1016/j.actbio.2016.08.058

    Article  Google Scholar 

  55. Takagi M, Yamada M, Utoh R et al (2023) A multiscale, vertical-flow perfusion system with integrated porous microchambers for upgrading multicellular spheroid culture. Lab Chip 23(9):2257–2267. https://doi.org/10.1039/D3LC00168G

    Article  Google Scholar 

  56. Lei X, Shao CM, Shou X et al (2021) Porous hydrogel arrays for hepatoma cell spheroid formation and drug resistance investigation. Bio-Des Manuf 4(4):842–850. https://doi.org/10.1007/s42242-021-00141-8

    Article  Google Scholar 

  57. Gonzalez-Fernandez T, Tenorio AJ, Leach JK (2020) Three-dimensional printed stamps for the fabrication of patterned microwells and high-throughput production of homogeneous cell spheroids. 3D Print Addit Manuf 7(3):139–147. https://doi.org/10.1089/3dp.2019.0129

    Article  Google Scholar 

  58. Fukuda J, Khademhosseini A, Yeo Y et al (2006) Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures. Biomaterials 27(30):5259–5267. https://doi.org/10.1016/j.biomaterials.2006.05.044

    Article  Google Scholar 

  59. Tu TY, Wang Z, Bai J et al (2014) Rapid prototyping of concave microwells for the formation of 3D, multicellular cancer aggregates for drug screening. Adv Healthc Mater 3(4):609–616. https://doi.org/10.1002/adhm.201300151

    Article  Google Scholar 

  60. Lee K, Kim C, Yang JY et al (2012) Gravity-oriented microfluidic device for uniform and massive cell spheroid formation. Biomicrofluidics 6(1):014114. https://doi.org/10.1063/1.3687409

    Article  Google Scholar 

  61. Marimuthu M, Rousset N, St-Georges-Robillard A et al (2018) Multi-size spheroid formation using microfluidic funnels. Lab Chip 18(2):304–314. https://doi.org/10.1039/C7LC00970d

    Article  Google Scholar 

  62. Sabhachandani P, Motwani V, Cohen N et al (2016) Generation and functional assessment of 3D multicellular spheroids in droplet based microfluidics platform. Lab Chip 16(3):497–505. https://doi.org/10.1039/C5LC01139F

    Article  Google Scholar 

  63. Chen YC, Lou X, Zhang ZX et al (2015) High-throughput cancer cell sphere formation for characterizing the efficacy of photo dynamic therapy in 3D cell cultures. Sci Rep 5(1):12175. https://doi.org/10.1038/srep12175

    Article  Google Scholar 

  64. Mattix BM, Olsen TR, Casco M et al (2014) Janus magnetic cellular spheroids for vascular tissue engineering. Biomaterials 35(3):949–960. https://doi.org/10.1016/j.biomaterials.2013.10.036

    Article  Google Scholar 

  65. Seo JY, Park SB, Kim SY et al (2023) Acoustic and magnetic stimuli-based three-dimensional cell culture platform for tissue engineering. Tissue Eng Regen Med 20(4):563–580. https://doi.org/10.1007/s13770-023-00539-8

    Article  Google Scholar 

  66. Kim JA, Choi JH, Kim M et al (2013) High-throughput generation of spheroids using magnetic nanoparticles for three-dimensional cell culture. Biomaterials 34(34):8555–8563. https://doi.org/10.1016/j.biomaterials.2013.07.056

    Article  Google Scholar 

  67. Jafari J, Han XL, Palmer J et al (2019) Remote control in formation of 3D multicellular assemblies using magnetic forces. ACS Biomater Sci Eng 5(5):2532–2542. https://doi.org/10.1021/acsbiomaterials.9b00297

    Article  Google Scholar 

  68. Zhang JB, Xu YT, Zhuo CY et al (2023) Highly efficient fabrication of functional hepatocyte spheroids by a magnetic system for the rescue of acute liver failure. Biomaterials 294:122014. https://doi.org/10.1016/j.biomaterials.2023.122014

    Article  Google Scholar 

  69. Phelan MA, Gianforcaro AL, Gerstenhaber JA et al (2019) An air bubble-isolating rotating wall vessel bioreactor for improved spheroid/organoid formation. Tissue Eng Part C Methods 25(8):479–488. https://doi.org/10.1089/ten.tec.2019.0088

    Article  Google Scholar 

  70. Santo VE, Estrada MF, Rebelo SP et al (2016) Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J Biotechnol 221:118–129. https://doi.org/10.1016/j.jbiotec.2016.01.031

    Article  Google Scholar 

  71. Cha HM, Kim SM, Choi YS et al (2015) Scaffold-free three-dimensional culture systems for mass production of periosteum-derived progenitor cells. J Biosci Bioeng 120(2):218–222. https://doi.org/10.1016/j.jbiosc.2014.12.019

    Article  Google Scholar 

  72. Strube F, Infanger M, Wehland M et al (2019) Alteration of cytoskeleton morphology and gene expression in human breast cancer cells under dimulated microgravity. Cell J 22(1):106–114. https://doi.org/10.22074/cellj.2020.6537

    Article  Google Scholar 

  73. Gallegos-Martínez S, Lara-Mayorga IM, Samandari M et al (2022) Culture of cancer spheroids and evaluation of anti-cancer drugs in 3D-printed miniaturized continuous stirred tank reactors (mCSTRs). Biofabrication 14(3):035007. https://doi.org/10.1088/1758-5090/ac61a4

    Article  Google Scholar 

  74. Rocha T, Teixeira AM, Gomes SG et al (2023) A 3D printed hydrogel to promote human keratinocytes’ spheroid-based growth. J Biomed Mater Res B Appl Biomater 111(5):1089–1099. https://doi.org/10.1002/jbm.b.35216

    Article  Google Scholar 

  75. Ling K, Huang GY, Liu JC et al (2015) Bioprinting-based high-throughput fabrication of three-fimensional MCF-7 human breast cancer cellular spheroids. Engineering 1(2):269–274. https://doi.org/10.15302/J-ENG-2015062

    Article  Google Scholar 

  76. Faulkner-Jones A, Greenhough SA, King J et al (2013) Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication 5(1):015013. https://doi.org/10.1088/1758-5082/5/1/015013

    Article  Google Scholar 

  77. Fu JJ, Lv XH, Wang LX et al (2021) Cutting and bonding Parafilm® to fast prototyping flexible hanging drop chips for 3D spheroid cultures. Cell Mol Bioeng 14(2):187–199. https://doi.org/10.1007/s12195-020-00660-x

    Article  Google Scholar 

  78. Sun BY, Zhao Y, Wu WM et al (2021) A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture. Acta Biomater 135:234–242. https://doi.org/10.1016/j.actbio.2021.08.006

    Article  Google Scholar 

  79. Tang T, Zhang PP, Wei YR et al (2023) High-efficiency 3D cell spheroid formation via the inertial focusing effect in rotating droplets. Bio-Des Manuf 6(1):90–97. https://doi.org/10.1007/s42242-022-00211-5

    Article  Google Scholar 

  80. Wang YL, Zhao L, Tian C et al (2015) Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics. Anal Methods 7(23):10040–10051. https://doi.org/10.1039/C5AY02466H

    Article  Google Scholar 

  81. Costa EC, de Melo-Diogo D, Moreira AF et al (2018) Spheroids formation on non-adhesive surfaces by liquid overlay technique: considerations and practical approaches. Biotechnol J 13(1):1700417. https://doi.org/10.1002/biot.201700417

    Article  Google Scholar 

  82. Santos JM, Camões SP, Filipe E et al (2015) Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther 6(1):90. https://doi.org/10.1186/s13287-015-0082-5

    Article  Google Scholar 

  83. Utama RH, Atapattu L, O’Mahony AP et al (2020) A 3D bioprinter specifically designed for the high-throughput production of matrix-embedded multicellular spheroids. iScience 23(10):101621. https://doi.org/10.1016/j.isci.2020.101621

    Article  Google Scholar 

  84. Dey M, Ozbolat IT (2020) 3D bioprinting of cells, tissues and organs. Sci Rep 10(1):14023. https://doi.org/10.1038/s41598-020-70086-y

    Article  Google Scholar 

  85. Sun W, Starly B, Daly AC et al (2020) The bioprinting roadmap. Biofabrication 12(2):022002. https://doi.org/10.1088/1758-5090/ab5158

    Article  Google Scholar 

  86. Banerjee D, Singh YP, Datta P et al (2022) Strategies for 3D bioprinting of spheroids: a comprehensive review. Biomaterials 291:121881. https://doi.org/10.1016/j.biomaterials.2022.121881

    Article  Google Scholar 

  87. Gao GF, Huang Y, Schilling AF et al (2018) Organ bioprinting: are we there yet? Adv Healthc Mater 1:1701018. https://doi.org/10.1002/adhm.201701018

    Article  Google Scholar 

  88. Arai K, Murata D, Verissimo AR et al (2018) Fabrication of scaffold-free tubular cardiac constructs using a Bio-3D printer. PLoS ONE 13(12):e0209162. https://doi.org/10.1371/journal.pone.0209162

    Article  Google Scholar 

  89. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699. https://doi.org/10.1109/TBME.2013.2243912

    Article  Google Scholar 

  90. Ozbolat IT (2015) Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med 6(2):024701. https://doi.org/10.1115/1.4030414

    Article  Google Scholar 

  91. Jakab K, Norotte C, Damon B et al (2008) Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng Part A 14(3):413–421. https://doi.org/10.1089/tea.2007.0173

    Article  Google Scholar 

  92. Jakab K, Neagu A, Mironov V et al (2004) Engineering biological structures of prescribed shape using self-assembling multicellular systems. Proc Natl Acad Sci USA 101(9):2864–2869. https://doi.org/10.1073/pnas.0400164101

    Article  Google Scholar 

  93. Mekhileri NV, Lim KS, Brown GCJ et al (2018) Automated 3D bioassembly of micro-tissues for biofabrication of hybrid tissue engineered constructs. Biofabrication 10(2):024103. https://doi.org/10.1088/1758-5090/aa9ef1

    Article  Google Scholar 

  94. Gutzweiler L, Kartmann S, Troendle K et al (2017) Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication 9(2):025027. https://doi.org/10.1088/1758-5090/aa7218

    Article  Google Scholar 

  95. Langer K, Joensson HN (2020) Rapid production and recovery of cell spheroids by automated froplet, microfluidics. SLAS Technol 25(2):111–122. https://doi.org/10.1177/2472630319877376

    Article  Google Scholar 

  96. Murata D, Arai K, Nakayama K (2020) Scaffold-free bio-3D printing using spheroids as “bio-inks” for tissue (re-)construction and drug response tests. Adv Healthc Mater 9(15):e1901831. https://doi.org/10.1002/adhm.201901831

    Article  Google Scholar 

  97. Nakamura A, Murata D, Fujimoto R et al (2021) Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication 13(4):044103. https://doi.org/10.1088/1758-5090/ac1c99

    Article  Google Scholar 

  98. LaBarge W, Morales A, Pretorius D et al (2019) Scaffold-free bioprinter utilizing layer-by-layer printing of cellular spheroids. Micromachines 10(9):570. https://doi.org/10.3390/mi10090570

    Article  Google Scholar 

  99. Ip BC, Cui F, Wilks BT et al (2018) Perfused organ cell-dense macrotissues assembled from prefabricated living microtissues. Adv Biosyst 2(8):1800076. https://doi.org/10.1002/adbi.201800076

    Article  Google Scholar 

  100. Ayan B, Heo DN, Zhang ZF et al (2020) Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv 6(10):eaaw5111. https://doi.org/10.1126/sciadv.aaw5111

    Article  Google Scholar 

  101. Tseng H, Gage JA, Shen T et al (2015) A spheroid toxicity assay using magnetic 3D bioprinting and real-time mobile device-based imaging. Sci Rep 5(1):13987. https://doi.org/10.1038/srep13987

    Article  Google Scholar 

  102. Olsen TR, Mattix B, Casco M et al (2015) Manipulation of cellular spheroid composition and the effects on vascular tissue fusion. Acta Biomater 13:188–198. https://doi.org/10.1016/j.actbio.2014.11.024

    Article  Google Scholar 

  103. Matai I, Kaur G, Seyedsalehi A et al (2020) Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226:119536. https://doi.org/10.1016/j.biomaterials.2019.119536

    Article  Google Scholar 

  104. Ning LQ, Chen XB (2017) A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J 12(8):1600671. https://doi.org/10.1002/biot.201600671

    Article  Google Scholar 

  105. Pati F, Jang J, Ha DH et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5(1):3935. https://doi.org/10.1038/ncomms4935

    Article  Google Scholar 

  106. Byambaa B, Annabi N, Yue K et al (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015. https://doi.org/10.1002/adhm.201700015

    Article  Google Scholar 

  107. Li XR, Deng QF, Zhuang TT et al (2020) 3D bioprinted breast tumor model for structure–activity relationship study. Bio-Des Manuf 3(4):361–372. https://doi.org/10.1007/s42242-020-00085-5

    Article  Google Scholar 

  108. Bulanova EA, Koudan EV, Degosserie J et al (2017) Bioprinting of a functional vascularized mouse thyroid gland construct. Biofabrication 9(3):034105. https://doi.org/10.1088/1758-5090/aa7fdd

    Article  Google Scholar 

  109. Xu CX, Chai WX, Huang Y et al (2012) Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes. Biotechnol Bioeng 109(12):3152–3160. https://doi.org/10.1002/bit.24591

    Article  Google Scholar 

  110. Xu T, Jin J, Gregory C et al (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99. https://doi.org/10.1016/j.biomaterials.2004.04.011

    Article  Google Scholar 

  111. Demirci U, Montesano G (2007) Single cell epitaxy by acoustic picolitre droplets. Lab Chip 7(9):1139–1145. https://doi.org/10.1039/B704965J

    Article  Google Scholar 

  112. Fang Y, Frampton JP, Raghavan S et al (2012) Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods 18(9):647–657. https://doi.org/10.1089/ten.tec.2011.0709

    Article  Google Scholar 

  113. Xu F, Celli J, Rizvi I et al (2011) A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J 6(2):204–212. https://doi.org/10.1002/biot.201000340

    Article  Google Scholar 

  114. Lee W, Debasitis JC, Lee VK et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30(8):1587–1595. https://doi.org/10.1016/j.biomaterials.2008.12.009

    Article  Google Scholar 

  115. Xu T, Zhao WX, Zhu JM et al (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139. https://doi.org/10.1016/j.biomaterials.2012.09.035

    Article  Google Scholar 

  116. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

    Article  Google Scholar 

  117. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23(24):H178–H183. https://doi.org/10.1002/adma.201004625

    Article  Google Scholar 

  118. Moldovan NI, Hibino N, Nakayama K (2017) Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev 23(3):237–244. https://doi.org/10.1089/ten.teb.2016.0322

    Article  Google Scholar 

  119. Imamura T, Shimamura M, Ogawa T et al (2018) Biofabricated structures reconstruct functional urinary bladders in radiation-injured rat bladders. Tissue Eng Part A 24(21–22):1574–1587. https://doi.org/10.1089/ten.tea.2017.0533

    Article  Google Scholar 

  120. Itoh M, Nakayama K, Noguchi R et al (2015) Scaffold-free tubular tissues created by a Bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS ONE 10(9):e0136681. https://doi.org/10.1371/journal.pone.0136681

    Article  Google Scholar 

  121. Yurie H, Ikeguchi R, Aoyama T et al (2017) The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE 12(2):e0171448. https://doi.org/10.1371/journal.pone.0171448

    Article  Google Scholar 

  122. Taniguchi D, Matsumoto K, Tsuchiya T et al (2018) Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact CardioVasc Thorac Surg 26(5):745–752. https://doi.org/10.1093/icvts/ivx444

    Article  Google Scholar 

  123. Takeoka Y, Matsumoto K, Taniguchi D et al (2019) Regeneration of esophagus using a scaffold-free biomimetic structure created with bio-three-dimensional printing. PLoS ONE 14(3):e0211339. https://doi.org/10.1371/journal.pone.0211339

    Article  Google Scholar 

  124. Ong CS, Fukunishi T, Zhang HT et al (2017) Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived cardiomyocytes. Sci Rep 7(1):4566. https://doi.org/10.1038/s41598-017-05018-4

    Article  Google Scholar 

  125. Yanagi Y, Nakayama K, Taguchi T et al (2017) In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep 7(1):14085. https://doi.org/10.1038/s41598-017-14542-2

    Article  Google Scholar 

  126. Zhang XY, Yanagi Y, Sheng ZJ et al (2018) Regeneration of diaphragm with bio-3D cellular patch. Biomaterials 167:1–14. https://doi.org/10.1016/j.biomaterials.2018.03.012

    Article  Google Scholar 

  127. Aoun L, Laborde A, Vieu C (2015) Shaping living tissues using microfabricated structures. Microelectron Eng 144:1–5. https://doi.org/10.1016/j.mee.2014.12.014

    Article  Google Scholar 

  128. Tejavibulya N, Youssef J, Bao B et al (2011) Directed self-assembly of large scaffold-free multi-cellular honeycomb structures. Biofabrication 3(3):034110. https://doi.org/10.1088/1758-5082/3/3/034110

    Article  Google Scholar 

  129. Yu Y, Moncal KK, Li JQ et al (2016) Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 6(1):28714. https://doi.org/10.1038/srep28714

    Article  Google Scholar 

  130. Livoti CM, Morgan JR (2010) Self-assembly and tissue fusion of toroid-shaped minimal building units. Tissue Eng Part A 16(6):2051–2061. https://doi.org/10.1089/ten.tea.2009.0607

    Article  Google Scholar 

  131. Blakely AM, Manning KL, Tripathi A et al (2015) Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng Part C Methods 21(7):737–746. https://doi.org/10.1089/ten.tec.2014.0439

    Article  Google Scholar 

  132. Ip BC, Cui F, Tripathi A et al (2016) The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing. Biofabrication 8(2):025015. https://doi.org/10.1088/1758-5090/8/2/025015

    Article  Google Scholar 

  133. Heo DN, Ayan B, Dey M et al (2021) Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering. Biofabrication 13(1):15013. https://doi.org/10.1088/1758-5090/abc1bf

    Article  Google Scholar 

  134. Ayan B, Wu Y, Karuppagounder V et al (2020) Aspiration-assisted bioprinting of the osteochondral interface. Sci Rep 10(1):13148. https://doi.org/10.1038/s41598-020-69960-6

    Article  Google Scholar 

  135. Daly AC, Davidson MD, Burdick JA (2021) 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun 12(1):753. https://doi.org/10.1038/s41467-021-21029-2

    Article  Google Scholar 

  136. Haisler WL, Timm DM, Gage JA et al (2013) Three-dimensional cell culturing by magnetic levitation. Nat Protoc 8(10):1940–1949. https://doi.org/10.1038/nprot.2013.125

    Article  Google Scholar 

  137. Caleffi JT, Aal MCE, Gallindo HOM et al (2021) Magnetic 3D cell culture: state of the art and current advances. Life Sci 286:120028. https://doi.org/10.1016/j.lfs.2021.120028

    Article  Google Scholar 

  138. Mattix B, Olsen TR, Gu Y et al (2014) Biological magnetic cellular spheroids as building blocks for tissue engineering. Acta Biomater 10(2):623–629. https://doi.org/10.1016/j.actbio.2013.10.021

    Article  Google Scholar 

  139. Wang Z, Yang PF, Xu HY et al (2009) Inhibitory effects of a gradient static magnetic field on normal angiogenesis. Bioelectromagnetics 30(6):446–453. https://doi.org/10.1002/bem.20501

    Article  Google Scholar 

  140. Gong X, Lin C, Cheng J et al (2015) Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS ONE 10(6):e0130348. https://doi.org/10.1371/journal.pone.0130348

    Article  Google Scholar 

  141. Laschke MW, Harder Y, Amon M et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12(8):2093–2104. https://doi.org/10.1089/ten.2006.12.2093

    Article  Google Scholar 

  142. Laschke MW, Menger MD (2017) Spheroids as vascularization units: from angiogenesis research to tissue engineering applications. Biotechnol Adv 35(6):782–791. https://doi.org/10.1016/j.biotechadv.2017.07.002

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61973206, 61703265, 61803250, and 61933008), the Shanghai Science and Technology Committee Rising-Star Program (No. 19QA1403700), and the National Center for Translational Medicine (Shanghai) SHU Branch.

Author information

Authors and Affiliations

Authors

Contributions

CXL investigated and summarized the literature, and wrote the original draft. CG conducted deep review and editing. HQ and AXJ edited the images. YZ and HZL gave some advice. YYL helped revise the paper, supervised the work, and applied for funds. All authors have read and approved this manuscript for publication.

Corresponding author

Correspondence to Yuanyuan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Gao, C., Qiao, H. et al. Spheroid construction strategies and application in 3D bioprinting. Bio-des. Manuf. (2024). https://doi.org/10.1007/s42242-024-00273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42242-024-00273-7

Keywords

Navigation