Skip to main content
Log in

Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Using stereolithography, 20 different structural variations comprised of millimeter diameter holes surrounded by trenches, plateaus, or micro-ring structures were prepared and tested for their ability to stably hold arrays of microliter sized droplets within the structures over an extended period of time. The micro-ring structures were the most effective in stabilizing droplets against mechanical and chemical perturbations. After confirming the importance of micro-ring structures using rapid prototyping, we developed an injection molding tool for mass production of polystyrene 3D cell culture plates with an array of 384 such micro-ring surrounded through-hole structures. These newly designed and injection molded polystyrene 384 hanging drop array plates with micro-rings were stable and robust against mechanical perturbations as well as surface fouling-facilitated droplet spreading making them capable of long term cell spheroid culture of up to 22 days within the droplet array. This is a significant improvement over previously reported 384 hanging drop array plates which are susceptible to small mechanical shocks and could not reliably maintain hanging drops for longer than a few days. With enhanced droplet stability, the hanging drop array plates with micro-ring structures provide better platforms and open up new opportunities for high-throughput preparation of microscale 3D cell constructs for drug screening and cell analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • D. Bakhos, S. Velut, A. Robier, M. Al zahrani, E. Lescanne, Otol. Neurotol. 31, 328–334 (2010)

    Article  Google Scholar 

  • V. Chan, P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Lab. Chip. 10, 2062–2070 (2010)

    Article  Google Scholar 

  • M.N. Cooke, J.P. Fisher, D. Dean, C. Rimnac, A.G. Mikos, J. Biomed, Mater. Res. B Appl. Biomater. 64, 65–69 (2003)

    Article  Google Scholar 

  • B. Fallahi, M. Foroutan, S. Motayalli, M. Dujoyny, S. Limaye, Neurol. Res. 21, 281–286 (1999)

    Google Scholar 

  • M. Foroutan, B. Fallahi, S. Mottayalli, M. Dujoyny, Crit. Rev. Neurosurg. 8, 203–208 (1998)

    Article  Google Scholar 

  • J. Friedrich, C. Seidel, R. Ebner, L.A. Kunz-Schughart, Nat. Protoc. 4, 309–324 (2009)

    Article  Google Scholar 

  • A.A. Gill, F. Claevssens, Methods Mol. Biol. 695, 309–321 (2011)

    Article  Google Scholar 

  • F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, L.A. Kunz-Schughart, J. Biotechnol. 148, 3–15 (2010)

    Article  Google Scholar 

  • L.M. Kalikin, A. Schneider, M.A. Thakur, Y. Fridman, L.B. Griffin, R.L. Dunn, T.J. Rosol, R.B. Shah, A. Rehemtulla, L.K. McCauley, K.J. Pienta, Cancer Biol. Ther. 2, 656–660 (2003)

    Google Scholar 

  • Y. Kalinin, V. Berejnov, R.E. Thorne, Microfluid. Nanofluidics 5, 449–454 (2008)

    Article  Google Scholar 

  • S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697–698 (2001)

    Article  Google Scholar 

  • J.M. Kelm, M. Fussenegger, Trends Biotechnol. 22, 195–202 (2004)

    Article  Google Scholar 

  • M. Kettner, P. Schmidt, S. Potente, F. Ramsthaler, M. Schrodt, J. Forensic. Sci. 56, 1015–1017 (2011)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006)

    Article  Google Scholar 

  • K. Kobayashi, K. Ikuta, IEEE/ASME Intern. Conf. Adv. Intell. Mechatron. 1–3, 661–666 (2007)

    Google Scholar 

  • K. Kobayashi, K. Ikuta, Appl. Phys. Lett. 92, 262505 (2008)

    Article  Google Scholar 

  • L.A. Kunz-Schughart, J.P. Freyer, F. Hofstaedter, R. Ebner, J. Biomol, Screen 9, 273–285 (2004)

    Google Scholar 

  • J.W. Lee, P.X. Lan, B. Kim, G. Lim, D.W. Cho, J. Biomed, Mater. Res. B Appl. Biomater. 87, 1–9 (2008)

    Article  Google Scholar 

  • W.G. Lee, D. Ortmann, M.J. Hancock, H. Bae, A. Khademhosseini, Tissue Eng. Part C Methods 16, 249–259 (2010)

    Article  Google Scholar 

  • S.J. Leigh, C.P. Purssell, J. Bowen, D.A. Hutchins, J.A. Covington, D.R. Billson, Sens. Actuator A-Phys. 168, 66–71 (2011)

    Article  Google Scholar 

  • T.W. Lim, Y. Son, Y.J. Jeong, D.Y. Yang, H.J. Kong, K.S. Lee, D.P. Kim, Lab. Chip. 11, 100–103 (2011)

    Article  Google Scholar 

  • R.Z. Lin, H.Y. Chang, Biotechnol. J. 3, 1172–1184 (2008)

    Article  MathSciNet  Google Scholar 

  • H. Lopponen, T. Holma, M. Sorri, L. Jyrkinen, V. Karhula, A. Kojyula, E. Ilkko, J. Laitinen, J. Kojyukangas, J. Oikarinen, O. Alamaki, Acta Otolaryngol. Suppl. 529, 47–49 (1997)

    Article  Google Scholar 

  • G. Mapili, Y. Lu, S. Chen, K. Roy, J. Biomed, Mater. Res. B. Appl. Biomater. 75, 414–424 (2005)

    Article  Google Scholar 

  • S. Maruo, K. Ikuta, Sens. Actuator A-Phys. 100, 70–76 (2002)

    Article  Google Scholar 

  • S. Maruo, H. Inonue, Appl. Phys. Lett. 89, 144101 (2006)

    Article  Google Scholar 

  • S. Maruo, K. Ikuta, H. Korogi, J. Microelectromech, Syst. 12, 533–539 (2003)

    Google Scholar 

  • S. Maruo, A. Takaura, Y. Saito, Opt. Express 17, 18525–18532 (2009)

    Article  Google Scholar 

  • F.P.W. Melchels, K. Bertoldi, R. Gabbrielli, A.H. Velders, J. Feijen, D.W. Grijpma, Biomaterials 27, 6909–6916 (2010a)

    Article  Google Scholar 

  • F.P.W. Melchels, J. Feijen, D.W. Grijpma, Biomaterials 31, 6121–6130 (2010b)

    Article  Google Scholar 

  • W. Mueller-Klieser, Am. J. Physiol. 273, C1109–C1123 (1997)

    Google Scholar 

  • R.J. Narayan, A. Doraiswamy, D.B. Chrisey, B.N. Chichkov, Mater. Today 13, 42–48 (2010)

    Article  Google Scholar 

  • W.S. Paiva, R. Amorim, D.A. Bezerra, M. Masini, Arg. Neuropsiquiatr. 65, 443–445 (2007)

    Article  Google Scholar 

  • S.H. Park, D.Y. Yang, K.S. Lee, Laser Photon. Rev. 3, 1–11 (2009)

    Article  Google Scholar 

  • K. Rudman, C. Hoekzema, J. Rhee, Facial Plast. Surg. 27, 358–365 (2011)

    Article  Google Scholar 

  • H. Selvaraj, B. Tan, K. Venkatakrishnan, J. Micromech. Microeng. 21, 075018 (2011)

    Article  Google Scholar 

  • J.H. Shin, J.W. Lee, J.H. Jung, D.W. Cho, G. Lim, J. Mater, Sci. 46, 5282–5287 (2011)

    Google Scholar 

  • Y.C. Tung, A.Y. Hsiao, S.G. Allen, Y.S. Torisawa, M. Ho, S. Takayama, Analyst 136, 473–478 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This material is based upon work supported by the Coulter Foundation, and the College of Engineering Translational Research Fund. We also thank Toby Donajkowski and Michael Deininger of the Design and Prototype Lab at the University of Michigan Medical Innovation Center for helpful discussion regarding the stereolithography equipment, providing the stereolithography machine, and fabricating the rapid prototype 384 hanging drop plates for us. A.Y. Hsiao acknowledges a Horace H. Rackham Predoctoral Fellowship from the University of Michigan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Takayama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, A.Y., Tung, YC., Kuo, CH. et al. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates. Biomed Microdevices 14, 313–323 (2012). https://doi.org/10.1007/s10544-011-9608-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9608-5

Keywords

Navigation