Skip to main content
Log in

A letter for objective Liutex

  • Letter
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Vortex structures, detected by the existing popular vortex identification methods, of the same case are generally different if the results are measured by different observers, who are moving with different coordinate systems. These coordinate systems can be inertial or non-inertial. Galilean invariance can solve the moving observer problems in different inertial coordinate systems. A variable is invariant under Galilean transformation is called Galilean invariant. Galilean invariant vortex identification methods can provide invariant vortex structures based on different inertial observers. However, for some situations, the observers are non-inertial, e.g., the observer is sitting on an aircraft which is accelerating or rotating. In such a situation, it requires to use an objective method. Objectivity represents a property that one variable is not observer-dependent (the observer’s motion can be either inertial or non-inertial). A strategy based on a zero-vorticity (measured in inertial frame) reference point is proposed in this letter to find the objective vortex structure. Liutex is chosen as the vortex indicator and two numerical examples are used to test the proposed strategy. The results show that the strategy is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau L. D. L., Lifshitz E. M. The classical theory of fields [M]. Oxford, UK: Pergamon Press, 1975.

    MATH  Google Scholar 

  2. Waleffe F. Exact coherent structures in channel flow [J]. Journal of Fluid Mechanics, 2001, 435: 93–102.

    Article  MATH  Google Scholar 

  3. Mellibovsky F., Eckhardt B. From travelling waves to mild chaos: A supercritical bifurcation cascade in pipe flow [J]. Journal of Fluid Mechanics, 2012, 709: 149–150.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kreilos T., Zammert S., Eckhardt B. Comoving frames and symmetry-related motions in parallel shear flows [J]. Journal of Fluid Mechanics, 2014, 751: 685–697.

    Article  MathSciNet  Google Scholar 

  5. Lugt H. J. The dilemma of defining a vortex [M]. Heidelberg, Berlin, Germany: Springer, 1979.

    Book  Google Scholar 

  6. Drouot R. Définition d’un transport associé à un modèle de fluide du deuxième ordre. Comparaison de diverses lois de comportement [J]. Comptes rendus de l’Académie des Sciences, Série A, 1976, 282: 923–926.

    MATH  Google Scholar 

  7. Haller G., Hadjighasem A., Farazmand M. et al. Defining coherent vortices objectively from the vorticity [J]. Journal of Fluid Mechanics, 2016, 795: 136–173.

    Article  MathSciNet  MATH  Google Scholar 

  8. Martins R. S., Pereira A. S., Mompean G. et al. An objective perspective for classic flow classification criteria [J]. Comptes Rendus Mecanique, 2016, 344: 52–59.

    Article  Google Scholar 

  9. Liu J. M., Gao Y. S., Wang Y. Q. et al. Objective Omega vortex identification method [J]. Journal of Hydrodynamics, 2019, 31(3): 455–463.

    Article  Google Scholar 

  10. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  11. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  12. Wang Y. Q., Gao Y. S., Xu H. et al. Liutex theoretical system and six core elements of vortex identification [J]. Journal of Hydrodynamics, 2020, 32(2): 197–211.

    Article  Google Scholar 

  13. Liu J., Liu C. Modified normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(6): 061704.

    Article  Google Scholar 

  14. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  15. Wang Y. Q., Gao Y. S., Liu J. M. et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition [J]. Journal of Hydrodynamics, 2019, 31(3): 464–474.

    Article  Google Scholar 

  16. Gao Y. S., Liu J. M., Yu Y. et al. A Liutex based definition and identification of vortex core center lines [J]. Journal of Hydrodynamics, 2019, 31(3): 445–454.

    Article  Google Scholar 

  17. Wang Y., Gao Y., Liu C. Letter: Galilean invariance of Rortex [J]. Physics of Fluids, 2018, 30(11): 111701.

    Article  Google Scholar 

  18. Wang Y., Yang Y., Yang G. et al. DNS study on vortex and vorticity in late boundary layer transition [J]. Communications in Computational Physics, 2017, 22(2): 441–459.

    Article  MathSciNet  MATH  Google Scholar 

  19. Yan Y., Chen L., Li Q. et al. Numerical study of microramp vortex generator for supersonic ramp flow control at Mach 2.5 [J]. Shock Waves, 2017, 27: 79–96.

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support from UTA Mathematics Department and are grateful to Texas Advanced Computation Center (TACC) for providing computing resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Additional information

Biography: Yifei Yu (1996–), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wang, Yq. & Liu, C. A letter for objective Liutex. J Hydrodyn 34, 965–969 (2022). https://doi.org/10.1007/s42241-022-0064-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0064-x

Key words

Navigation