Skip to main content
Log in

Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In the present study, the physical meaning of vorticity is revisited based on the Liutex-Shear (RS) decomposition proposed by Liu et al. in the framework of Liutex (previously called Rortex), a vortex vector field with information of both rotation axis and swirling strength (Liu et al. 2018). It is demonstrated that the vorticity in the direction of rotational axis is twice the spatial mean angular velocity in the small neighborhood around the considered point while the imaginary part of the complex eigenvalue (λci) of the velocity gradient tensor (if exist) is the pseudo-time average angular velocity of a trajectory moving circularly or spirally around the axis. In addition, an explicit expression of the Liutex vector in terms of the eigenvalues and eigenvectors of velocity gradient is obtained for the first time from above understanding, which can further, though mildly, accelerate the calculation and give more physical comprehension of the Liutex vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu J., Ma H., Zhou M. Vorticity and Vortices Dynamics [B]. Springer-Verlag, Berlin Heidelberg, 2006.

    Book  Google Scholar 

  2. Dong X., Dong G., Liu C. Study on vorticity structures in late flow transition [J]. Physics of Fluids, 2018, 30:014105.

    Article  Google Scholar 

  3. Wang Y., Yang Y., Yang G. et al. DNS study on vortex and vorticity in late boundary layer transition [J]. Communications in Computational Physics, 2017, 22: 441–459.

    Article  MathSciNet  Google Scholar 

  4. Robinson S. K. Coherent motion in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639.

    Article  Google Scholar 

  5. Jiménez J. Coherent structures in wall-bounded turbulence [J]. Journal of Fluid Mechanics, 2018, 842: P1.

    Article  MathSciNet  Google Scholar 

  6. Theodorsen T. Mechanism of turbulence [C]. in Proceedings of the Midwestern Conference on Fluid Mechanics, Columbus, Ohio, USA, 1952.

    Google Scholar 

  7. Adrian R. J. Hairpin vortex organization in wall turbulence [J]. Physics of Fluids, 2007, 19: 041301.

    Article  MATH  Google Scholar 

  8. Wang Y., Al-Dujaly H., Yan Y. et al. Physics of multiple level hairpin vortex structures in turbulence [J]. Science China: Physics, Mechanics and Astronomy, 2016, 59: 624703.

    Google Scholar 

  9. Eitel-Amor G., órlú R., Schlatter P. et al. Hairpin vortices in turbulent boundary layers [J]. Physics of Fluids, 2015, 27: 025108.

    Article  Google Scholar 

  10. Kasagi N., Sumitani Y., Suzuki Y. et al. Kinematics of the quasi-coherent vertical structure in near-wall turbulence [J]. International Journal of Heat and Fluid Flow, 1995, 16: 2–10.

    Article  Google Scholar 

  11. Jeong J., Hussain F., Schoppa W. et al. Coherent structures near the wall in a turbulent channel flow [J]. Journal of Fluid Mechanics, 1997, 332: 185–214.

    Article  MATH  Google Scholar 

  12. Iida O., Iwatsuki M., Nagano Y. Vortical turbulence structure and transport mechanism in a homogeneous shear flow [J]. Physics of Fluids, 2000, 12: 2895.

    Article  MATH  Google Scholar 

  13. Kline S. J., Reynolds W. C., Schraub F. A., Runstadler P. W. The structure of turbulent boundary layers [J]. Journal of Fluid Mechanics, 1967, 30: 741–773.

    Article  Google Scholar 

  14. Schoppa W., Hussain F. Coherent structure generation in near-wall turbulence [J]. Journal of Fluid Mechanics, 2002, 453: 57–108.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chong M., Perry A., Cantwell B. A general classification of three dimensional flow fields [J]. Physics of Fluids A, 1990, 2: 765–777.

    Article  MathSciNet  Google Scholar 

  16. Hunt J., Wray A., Moin P. Eddies, streams, and convergence zones in turbulent flows [C]. Proceedings of the Summer Program. Center for Turbulence Research, 1988, 193–208.

    Google Scholar 

  17. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu C., Wang Y., Yang Y. et al. New Omega vortex identification method [J]. Science China: Physics, Mechanics and Astronomy, 2016, 59:684711.

    Google Scholar 

  19. Chen H., Adrian R. J., Zhong Q. et al. Analytic solutions for three-dimensional swirling strength in compressible and incompressible flows [J]. Physics of Fluids, 2014, 26: 081701.

    Article  Google Scholar 

  20. Chen Q., Zhong Q., Qi M. et al. Comparison of vortex identification criteria for velocity fields in wall turbulence [J]. Physics of Fluids, 2015, 27: 085101.

    Article  Google Scholar 

  21. Zhang Y. N., Qiu X., Chen F. et al. A selected review of vortex identification methods with applications [J]. Journal of Hydrodynamics, 2018, 30(5): 767–779.

    Article  Google Scholar 

  22. Epps B. Review of vortex identification methods [C]. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, 2017.

    Google Scholar 

  23. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30: 034103.

    Article  Google Scholar 

  24. Tian S., Gao Y., Dong X. et al. Definition of vortex vector and vortex [J]. Journal of Fluid Mechanics, 2018, 849: 312–339.

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30: 085107.

    Article  Google Scholar 

  26. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, https://doi.org/10.1007/s42241-019-0022-4.

    Google Scholar 

  27. Liu J., Gao. Y., Wang Y. et al. Objective Omega vortex identification method [J]. Journal of Hydrodynamics, 2019, https://doi.org/10.1007/s42241-019-0028-y

    Google Scholar 

  28. Liu J., Wang Y., Gao Y. et al. Galilean invariance of Omega vortex identification method [J]. Journal of Hydrodynamics, 2019, https://doi.org/10.1007/s42241-019-0024-2

    Google Scholar 

  29. Lele S. K. Compact finite difference schemes with spectral-like resolution [J]. Journal of Computational Physics, 1992, 103: 16–42.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee C., Li R. Dominant structure for turbulent production in a transitional boundary layer [J]. Journal of Turbulence, 2007, 8: 55.

    Article  Google Scholar 

  31. Liu C., Yan Y., Lu P. Physics of turbulence generation and sustence in a transitional boundary layer [J]. Computers and Fluids, 2014, 102: 353–384.

    Article  Google Scholar 

  32. Liu C., Chen L. Parallel DNS for vortex structure of late stages of flow transition [J]. Computers and Fluids, 2011, 45: 129–137.

    Article  MATH  Google Scholar 

  33. Laizet S., Lamballais E. High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy [J]. Journal of Computational Physics, 2008, 228: 5989–6015.

    Article  MathSciNet  MATH  Google Scholar 

  34. Laizet S., Li N. Incompact3d: A powerful tool to tackle turbulence problems with up to O(105) computational cores [J]. International Journal for Numerical Methods in Fluids, 2011, 67: 1735–1757.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The work is partly supported by China Post-Doctoral Science Foundation (Grant No. 2017M610876), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos.18KJA110001), and the Visiting Scholar Scholarship of the China Scholarship Council (Grant No. 201808320079). This work is partly accomplished by using code DNSUTA developed by Dr. Chaoqun Liu at the University of Texas at Arlington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Additional information

Project supported by the National Nature Science Foundation of China (Grant Nos. 11702159, 91530325).

Biography: Yi-qian Wang (1987-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yq., Gao, Ys., Liu, Jm. et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition. J Hydrodyn 31, 464–474 (2019). https://doi.org/10.1007/s42241-019-0032-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0032-2

Key words

Navigation