Skip to main content
Log in

A Liutex based definition and identification of vortex core center lines

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Six core issues for vortex definition and identification concern with (1) the absolute strength, (2) the relative strength, (3) the rotational axis, (4) the vortex core center, (5) the vortex core size, and (6) the vortex boundary (Liu C. 2019). However, most of the currently popular vortex identification methods, including the Q criterion, the λ2 criterion and the λci criterion et al, are Eulerian local region-type vortex identification criteria and can only approximately identify the vortex boundary by somewhat arbitrary threshold. On the other hand, the existing Eulerian local line-type methods, which seek to extract line-type features such as vortex core line, are not entirely satisfactory since most of these methods are based on vorticity or pressure minimum that will fail in many cases. The key issue is the lack of a reasonable mathematical definition for vortex core center. To address this issue, a Liutex (previously named Rortex) based definition of vortex core center is proposed in this paper. The vortex core center, also called vortex rotation axis line here, is defined as a line where the Liutex magnitude gradient vector is aligned with the Liutex vector, which mathematically implies that the cross product of the Liutex magnitude gradient vector and the Liutex vector on the line is equal to zero. Based on this definition, a novel three-step method for extracting vortex rotation axis lines is presented. Two test cases, namely the Burgers vortex and hairpin vortices, are examined to justify the proposed method. The results demonstrate that the proposed method can successfully identify vortex rotation axis lines without any user-specified threshold, so that the proposed method is very straightforward, robust and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lugt H. J. Vortex flow in nature and technology [M]. New York, USA: Wiley, 1983.

    Google Scholar 

  2. Hussain A. K. M. F. Coherent structures and turbulence [J]. Journal of Fluid Mechanics, 1986, 173: 303–356.

    Article  Google Scholar 

  3. Robinson S. K. Coherent motion in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639.

    Article  Google Scholar 

  4. Sirovich L. Turbulence and the dynamics of coherent structures. Part I: Coherent structures [J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571.

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu C., Yan Y., Lu P. Physics of turbulence generation and sustenance in a boundary layer [J]. Computers and Fluids, 2014, 102: 353–384.

    Article  Google Scholar 

  6. Bake S., Meyer D., Rist U. Turbulence mechanism in Klebanoff transition: A quantitative comparison of experiment and direct numerical simulation [J]. Journal of Fluid Mechanics, 2002, 459: 217–243.

    Article  MATH  Google Scholar 

  7. Wu X., Moin P. Direct numerical simulation of turbulence in a nominally zeropressure gradient flat-plate boundary layer [J]. Journal of Fluid Mechanics, 2009, 630: 5–41.

    Article  MathSciNet  MATH  Google Scholar 

  8. Theodorsen T. Mechanism of turbulence [C]. Proceedings of the Second Midwestern Conference on Fluid Mechanics, Columbus, OH, USA: Ohio State University, 1952.

    Google Scholar 

  9. Adrian R. J. Hairpin vortex organization in wall turbulence [J]. Physics of Fluids, 2007, 19(4): 041301.

    Article  MATH  Google Scholar 

  10. Eitel-Amorl G., Örlü R., Schlatter P. et al. Hairpin vortices in turbulent boundary layers [J]. Physics of Fluids, 2015, 27(2): 025108.

    Article  Google Scholar 

  11. Brooke J. W., Hanratty T. J. Origin of turbulence-producing eddies in a channel flow [J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(4): 1011–1022.

    Article  MATH  Google Scholar 

  12. Jeong J., Hussain F., Schoppa W. et al. Coherent structures near the wall in a turbulent channel flow [J]. Journal of Fluid Mechanics, 1997, 332: 185–214.

    Article  MATH  Google Scholar 

  13. Liu C., Gao Y., Dong X. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  14. Liu C., Cai X. New theory on turbulence generation and structure-DNS and experiment [J]. Science China Physics, Mechanics and Astronomy, 2017, 60(8): 084731.

    Article  Google Scholar 

  15. Lugt H. J. “The dilemma of dening a vortex,” in recent developments in theoretical and experimental fluid mechanics [M]. Berlin Heidelberg, Germany: Springer-Verlag, 1979.

    Google Scholar 

  16. Lamb H. Hydrodynamics [M]. Cambridge, UK: Cambridge University Press, 1932.

    MATH  Google Scholar 

  17. Saffman P. Vortices dynamics [M]. Cambridge, UK: Cambridge University Press, 1992.

    Google Scholar 

  18. Robinson S. K. “A review of vortex structures and associated coherent motions in turbulent boundary layers,” in structure of turbulence and drag reduction [M]. Berlin Heidelberg, Germany: Springer-Verlag, 1990.

    Google Scholar 

  19. Wang Y., Yang Y., Yang G. et al. DNS study on vortex and vorticity in late boundary layer transition [J]. Communications in Computational Physics, 2017, 22(2): 441–459.

    Article  MathSciNet  Google Scholar 

  20. Gao Q., Ortiz-Dueñas C., Longmire E. K. Analysis of vortex populations in turbulent wall-bounded flows [J]. Journal of Fluid Mechanics, 2011, 678: 87–123.

    Article  MATH  Google Scholar 

  21. Pirozzoli S., Bernardini M., Grasso F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer [J]. Journal of Fluid Mechanics, 2008, 613: 205–231.

    Article  MATH  Google Scholar 

  22. Epps B. Review of vortex identification methods [R]. 2017, AIAA 2017-0989.

    Book  Google Scholar 

  23. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  24. Hunt J. C. R., Wray A. A., Moin P. Eddies, stream, and convergence zones in turbulent flows [R]. Center for Turbulent Research Report CTR-S88, 1988, 193–208.

    Google Scholar 

  25. Chong M. S., Perry A. E. A general classification of three-dimensional flow fields [J]. Physics of Fluids A, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

  26. Zhou J., Adrian R., Balachandar S. et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. Journal of Fluid Mechanics, 1999, 387: 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  27. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chakraborty P., Balachandar S., Adrian R. J. On the relationships between local vortex identification schemes [J]. Journal of Fluid Mechanics, 2005, 535: 189–214.

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu C. Numerical and theoretical study on ‘vortex breakdown’ [J]. International Journal of Computer Mathema-tics, 2011, 88(17): 3702–3708.

    Article  MathSciNet  Google Scholar 

  30. Liu C., Wang Y., Yang Y. et al. New omega vortex identification method [J]. Science China Physics, Mechanics and Astronomy, 2016, 59(8): 684711.

    Article  Google Scholar 

  31. Dong X. R., Wang Y. Q., Chen X. P. et al. Determination of epsilon for Omega vortex identification method [J]. Journal of Hydrodynamics, 2018, 30(4): 541–548.

    Article  Google Scholar 

  32. Maciel Y., Robitaille M., Rahgozar S. A method for characterizing cross-sections of vortices in turbulent flows [J]. International Journal of Heat and Fluid Flow, 2012, 37: 177–188.

    Article  Google Scholar 

  33. Chen H., Adrian R. J., Zhong Q. et al. Analytic solutions for three dimensional swirling strength in compressible and incompressible flows [J]. Physics of Fluids, 2014, 26(8): 081701.

    Article  Google Scholar 

  34. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  35. Gao Y., Liu C. Rortex based velocity gradient tensor decomposition [J]. Physics of Fluids, 2019, 31(1): 011704.

    Article  Google Scholar 

  36. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  37. Strawn R. C., Kenwright D. N, Ahmad Jasim. Computer visualization of vortex wake systems [J]. AIAA Journal, 1999, 37(4): 511–512.

    Article  Google Scholar 

  38. Banks D. C., Singer B. A. Vortex tubes in turbulent flows: Identication, representation, reconstruction [C]. Proceedings of the Conference on Visualization’ 94, Washinton DC, USA, 1994.

    Google Scholar 

  39. Levy Y., Degani D., Seginer A. Graphical visualization of vortical flows by means of helicity [J]. AIAA Journal, 1990, 28(8): 1347–1352.

    Article  Google Scholar 

  40. Zhang S., Choudhury D. Eigen helicity density: A new vortex identification scheme and its application in accelerated inhomogeneousows [J]. Physics of Fluids, 2006, 18(5): 058104.

    Article  Google Scholar 

  41. Mura H., Kida S. Identification of tubular vortices in turbulence [J]. Journal of the Physical Society of Japan, 1997, 66(5): 1331–1334.

    Article  MATH  Google Scholar 

  42. Kida S., Mura H. Identification and analysis of vertical structures [J]. European Journal of Mechanics-B/Fluids, 1998, 17(4): 471–488.

    Article  Google Scholar 

  43. Linnick M., Rist U. Vortex identification and extraction in a boundary-layer flow [C]. Vision, Modelling, and Visualization 2005, Erlangen, Germany, 2005.

    Google Scholar 

  44. Sujudi D., Haimes R. Identification of swirling flow in 3D vector fields [R]. 1995, AIAA Paper 95–1715.

    Google Scholar 

  45. Roth M. Automatic extraction of vortex core lines and other line-type features for scientific visualization [D]. Doctoral Thesis, Zürich, Switzerland: ETH Zürich, 2000.

    Google Scholar 

  46. Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1269–1285.

    Article  Google Scholar 

  47. Wang Y. Q., Gao Y. S., Liu J. et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition [J]. Journal of Hydrodynamics, 2019, https://doi.org/10.1007/s42241-019-0032-2.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Mathematics at University of Texas at Arlington and AFOSR (Grant No. MURI FA9559-16-1-0364), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 18KJA110001) and the Visiting Scholar Scholarship of the China Scholarship Council (Grant No. 201808320079). The authors are grateful to Texas Advanced Computational Center (TACC) for providing computation hours. This work is accomplished by using code DNSUTA developed by Dr. Chaoqun Liu at the University of Texas at Arlington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaoqun Liu.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 91530325).

Biography: Yi-sheng Gao (1984-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Ys., Liu, Jm., Yu, Yf. et al. A Liutex based definition and identification of vortex core center lines. J Hydrodyn 31, 445–454 (2019). https://doi.org/10.1007/s42241-019-0048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0048-7

Key words

Navigation