Skip to main content
Log in

Tuning turbulent convection through rough element arrangement

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The tuning of turbulent Rayleigh-Bénard (RB) convection in a box is realized numerically by designed rough element arrangement. Considering the nonlinear dynamics of the thermal turbulence system, five models with rough elements of different widths and the same height are proposed to tune the fluid flow heat-transport capacity. Numerical simulations are performed using spectral element method for Rayleigh number in the range 106Ra ≤ 109 and a fixed Prandtl number Pr = 0.7. It is found that heat transport is enhanced for large roughness widths as the interaction between the large-scale circulation and secondary flows inside the cavity regions between the rough elements promotes the eruptions of thermal plumes, but is suppressed for small ones as more heat are trapped inside the cavities. In all the rough models studied, different scaling exponents for the heat transport are identified and the influences of roughness arrangement on flow structure are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlers G., Grossmann S., Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection [J]. Reviews of Modern Physics, 2009, 81(2): 503–537.

    Article  Google Scholar 

  2. Lohse D., Xia K. Q. Small-scale properties of turbulent Rayleigh-Bénard convection [J]. Annual Review of Fluid Mechanics, 2010, 42: 335–364.

    Article  Google Scholar 

  3. Xu A., Chen X., Xi H. D. Tristable flow states and reversal of the large-scale circulation in two-dimensional circular convection cells [J]. Journal of Fluid Mechanics, 2021, 910: A33.

    Article  MathSciNet  Google Scholar 

  4. Sun C., Zhou Q. Experimental techniques for turbulent Taylor-Couette flow and Rayleigh—Bénard convection [J]. Nonlinearity, 2014, 27(9): R89.

    Article  Google Scholar 

  5. Kraichnan R. H. Turbulent thermal convection at arbitrary Prandtl number [J]. Physics of Fluids, 1962, 5(11): 1374–1389.

    Article  Google Scholar 

  6. Wang Z., Mathai V., Sun C. Self-sustained biphasic catalytic particle turbulence [J]. Nature Communications, 2019, 10(1): 1–7.

    Article  Google Scholar 

  7. Huang S. D., Kaczorowski M., Ni R. et al. Confinement-induced heat-transport enhancement in turbulent thermal convection [J]. Physical Review Letters, 2013, 111(10): 104501.

    Article  Google Scholar 

  8. Wang B. F., Zhou Q., Sun C. Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement [J]. Science Advances, 2020, 6(21): eaaz8239.

    Article  Google Scholar 

  9. Liu S., Huisman S. G. Heat transfer enhancement in Rayleigh-Bénard convection using a single passive barrier [J]. Physical Review Fluids, 2020, 5: 123502.

    Article  Google Scholar 

  10. Zhu X., Stevens R. J., Verzicco R. et al. Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection [J]. Physical Review Letters, 2017, 119(15): 154501.

    Article  Google Scholar 

  11. Zhang Y. Z., Sun C., Bao Y. et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh—Bénard convection [J]. Journal of Fluid Mechanics, 2018, 836: R2.

    Article  Google Scholar 

  12. Zhu X., Stevens R. J., Shishkina O. et al. Nu-Ra scaling enabled by multiscale wall roughness in Rayleigh—Bénard turbulence [J]. Journal of Fluid Mechanics, 2019, 869: R4.

    Article  Google Scholar 

  13. Dong D. L., Wang B. F., Dong Y. H. et al. Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection [J]. Physics of Fluids, 2020, 32(4): 045114.

    Article  Google Scholar 

  14. Wang C., Jiang L. F., Jiang H. C. et al. Heat transfer and flow structure of two-dimensional thermal convection over ratchet surfaces [J]. Journal of Hydrodynamics, 2021, 33(5): 970–978.

    Article  Google Scholar 

  15. Shen Y., Tong P., Xia K. Q. Turbulent convection over rough surfaces [J]. Physical Review Letters, 1996, 76(6): 908–911.

    Article  Google Scholar 

  16. Du Y. B., Tong P. Turbulent thermal convection in a cell with ordered rough boundaries [J]. Journal of Fluid Mechanics, 2000, 407: 57–84.

    Article  Google Scholar 

  17. Qiu X. L., Xia K. Q., Tong P. Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection [J]. Journal of Turbulence, 2005, 6: 30.

    Article  Google Scholar 

  18. Wei P., Chan T. S., Ni R. et al. Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection [J]. Journal of Fluid Mechanics, 2014, 740: 28–46.

    Article  MathSciNet  Google Scholar 

  19. Xie Y. C., Xia K. Q. Turbulent thermal convection over rough plates with varying roughness geometries [J]. Journal of Fluid Mechanics, 2017, 825: 573–599.

    Article  MathSciNet  Google Scholar 

  20. Rusaouën E., Liot O., Castaing B. et al. Thermal transfer in Rayleigh-Bénard cell with smooth or rough boundaries [J]. Journal of Fluid Mechanics, 2018, 837: 443–460.

    Article  MathSciNet  Google Scholar 

  21. Shishkina O., Wagner C. Modelling the influence of wall roughness on heat transfer in thermal convection [J]. Journal of Fluid Mechanics, 2011, 686: 568–582.

    Article  Google Scholar 

  22. Yang J. L., Zhang Y. Z., Jin C. T. et al. The Pr-dependence of the critical roughness height in two-dimensional turbulent Rayleigh—Bénard convection [J]. Journal of Fluid Mechanics, 2021, 911: A52.

    Article  Google Scholar 

  23. Jiang H., Zhu X., Mathai V. et al. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces [J]. Physical Review Letters, 2018, 120(4): 044501.

    Article  Google Scholar 

  24. Xu B. L., Wang Q., Wan Z. H. et al. Heat transport enhancement and scaling law transition in two- dimensional Rayleigh-Bénard convection with rectangular-type roughness [J]. International Journal of Heat and Mass Transfer, 2018, 121: 872–883.

    Article  Google Scholar 

  25. Wagner S., Shishkina O. Heat flux enhancement by regular surface roughness in turbulent thermal convection [J]. Journal of Fluid Mechanics, 2015, 763: 109–135.

    Article  MathSciNet  Google Scholar 

  26. Xu A., Chen X., Wang F. et al. Correlation of internal flow structure with heat transfer efficiency in turbulent Rayleigh-Bénard convection [J]. Physics of Fluids, 2020, 32(10): 105112.

    Article  Google Scholar 

  27. Zhang Y., Zhou Q., Sun C. Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh—Bénard convection [J]. Journal of Fluid Mechanics, 2017, 814: 165–184.

    Article  MathSciNet  Google Scholar 

  28. Malkus W. V. The heat transport and spectrum of thermal turbulence [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1954, 225(1161): 196–212.

    MathSciNet  MATH  Google Scholar 

  29. Grossmann S., Lohse D. Scaling in thermal convection: A unifying theory [J]. Journal of Fluid Mechanics, 2000, 407: 27–56.

    Article  MathSciNet  Google Scholar 

  30. Yang W. W., Wang B. F., Zhou Q. et al. The driven cavity turbulent flow with porous walls: Energy transfer, dissipation, and time-space correlations [J]. Journal of Hydrodynamics, 2021, 33(4): 712–724.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of Shanghai Academic Research Leader (Grant No. 19XD1421400), the Shanghai Science and Technology Program (Project Nos. 19JC1412802, 20ZR1419800 and 21PJ1404400) and the China Postdoctoral Science Foundation (Grant No. 2020M681259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-fu Wang.

Additional information

Project supported by the Natural Science Foundation of China (Grant Nos. 11988102, 92052201, 91852202, 11825204, 12102246 and 11972220).

Biography: Jian-zhao Wu (1991-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Jz., Dong, Dl., Wang, Bf. et al. Tuning turbulent convection through rough element arrangement. J Hydrodyn 34, 308–314 (2022). https://doi.org/10.1007/s42241-022-0020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-022-0020-9

Key words

Navigation